NAG Fortran Library Manual
Mark 19

Volume 3

D02P - D03

DO2P - Ordinary Differential Equations: (cont’d from Volume 2} . +
D03 - Partial Differential Equations

NAG Fortran Library Manual, Mark 19
©The Numerical Algorithms Group Limited, 1999

All rights reserved. No part of this manual may be reproduced, transcribed, stored in a retrieval
system, translated into any language or computer language or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written
permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the contents of this
manual and specifically disclaims any implied warranties or merchantability or fitness for any
purpose.

The copyright owner reserves the right to revise this manual and to make changes from time to
time in its contents without notifying any person of such revisions or changes.

September 1999 ISBN 1-85206-169-3

NAG is a registered trademark of:
The Numerical Algorithms Group Limited
The Numerical Algorithms Group Inc
The Numerical Algorithms Group (Deutschland) GmbH
Nihon Numerical Algorithms Group KK

All other trademarks are acknowledged.

NAG Ltd
Wilkinson House
Jordan Hill Road
Oxford

0X2 8DR
United Kingdom

Tel: +44 (0)1865 511245
Fax: +44 (0)1865 310139

NAG GmbH
Schleifiheimerstrafie 5
85748 Garching
Deutschland

Tel: +49 (0)89 3207395
Fax: +49 (0)89 3207396

NAG also has a number of distributors throughout the world. Please contact NAG for further

details.

[NP3390/19]

Nihon NAG KK
Nagashima Building 2F
2-24-3 Higashi
Shibuya-ku

Tokyo

Japan

Tel: +81 (0)3 5485 2901
Fax: +81 (0)3 5485 2903

NAG Inc
1400 Opus Place, Suite 200

Downers Grove, IL 60515-5702

USA

Tel: +1 630 971 2337
Fax: +1 630 971 2706

D02 — Ordinary Differential Equations DO02PCF

DO2PCF - NAG Fortran Library Routine Documentl '

. Wt
Note: before using this routine, please read the Users’ Note for your implementation to check- the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent. *

w0

Purpose : e : .
DO2PCF solves the initial value problem for a first order system of ordinary differential

equations using Runge-Kutta methods.

Specification |
SUBROUTINE DOZPCF (F, TWANT, TGOT, YGOT, YPGOT, YMAX, WORK, IFAIL)
INTEGER . .. -IFAIL. | | -
real TWANT, TGOT, YGOT(*), YPGOT(*), YMAX(*), WORK(*)
EXTERNAL {

Description -

DO2PCF and its associated routines (DO2PVF, D02PYF, DO2PZF) solve the initial value
problem for a first order system of ordinary differential equations. The routines, based on
Runge-Kutta methods and derived from RKSUITE [1], integrate

y' = flry) given y(1) =y, ,
where y is the vector of n solution components and ¢ is the independent variable.

DO2PCEF is designed for the usual task, namely to compute an approximate solution at a sequence
of points. You must first call DO2PVF to specify the problem and how it. is to,be solved.
Thereafter you call DO2PCF repeatedly with successive values of TWANT, the points at which
you require the solution, in the range from TSTART to TEND (as specified in DO2PVF). In this
manner DO2PCF returns the point at which it has computed a solution TGOT (usually TWANT),
the solution there (YGOT) and its derivative (YPGOT). If DO2PCF encounters some difficulty
in taking a step toward TWANT, then it returns the point of difficulty (TGOT) and the solution
and derivative computed there (YGOT and YPGOT, respectively).

In the call to DO2PVF you can specify either the first step size for DO2PCF to attempt or that it
compute automatically an appropriate value. Thereafter DO2PCF estimates an appropriate step
size for its next step. This value and other details of the integration can be obtained after any call
to DO2PCF by a call to DO2PYF. The local error is controlled at every step as specified in
DO2PVF. If you wish to.assess the true error, you must set ERRASS = .TRUE. in the call to
DO2PVF. This assessment can be obtained after any call to DO2PCF by a call to DO2PZF.

For more compticated tasks, you are referred to routines DO2PDF, DO2PXF and DO2PWF, all of
which are used by DO2PCF. S

References

(1] BRANKIN, R.W., GLADWELL, I. and SHAMPINE, LF. o
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, U.S.A, 1991.

Parameters” '
F — SUBROUTINE, supplied by the user. : Exterqbl Procedure

F must eyaluate the functions f; (that is the first derivatives y;) for given values of the
arguments ¢, y,. i -

[NP2478/16) Page 1

DO02PCF D02 - Ordinary Differential Equations

Its specification is:

SUBROUTINE F (T, Y, YP)

real T, Y(*), YP(¥*)
I: T —real. Input
On entry: the current value of the independent variable, ¢.
2: Y(*) — real array. Input
On entry: the current values of the dependent variables, y, for i = 1,2,...,n.
3: YP(*) — real array. Output

On exit: the values of f; for i = 1,2,...,n.

F must be declared as EXTERNAL in the (sub)program from which DO2PCF is called.
Parameters denoted as Input must not be changed by this procedure.

22 TWANT - real. Input
On entry: the next value of the independent variable, ¢, where a solution is desired.

Constraints: TWANT must be closer to TEND than the previous value of TGOT (or
TSTART on the first call to DO2PCF); see DO2PVF for a description of
TSTART and TEND.
TWANT must not lie beyond TEND in the direction of integration.

3: TGOT - real. Output

On exit: the value of the independent variable r at which a solution has been computed. On
successful exit with IFAIL = 0, TGOT will equal TWANT. On exit with IFAIL > 1, a
solution has still been computed at the value of TGOT but in general TGOT will not equal
TWANT.

4: YGOT(*) — real array. Input/ Output
Note: the dimension of YGOT must be at least n.

On entry: on the first call to DO2PCF, YGOT need not be set. On all subsequent calls YGOT
must remain unchanged.

On exit: an approximation to the true solution at the value of TGOT. At each step of the
integration to TGOT, the local error has been controlled as specified in DO2PVF. The local
error has still been controlled even when TGOT # TWANT, that is after a return with
IFAIL > 1.

5: YPGOT(*) - real array. Output
Note: the dimension of YPGOT must be at least n.
On exit: an approximation to the first derivative of the true solution at TGOT.

6: YMAX(*) — real array. Input! Output
Note: the dimension of YMAX must be at least n.

Onentry: on the first call to DO2PCF, YMAX need not be set. On all subsequent calls
YMAX must remain unchanged.

On exit: YMAX (i) contains the largest value of |y,;| computed at any step in the integration
so far.

Page 2 [NP2478/16])

D02 — Ordinary Differential Equations D02PCF

7:

WORK (*) — real array. Input/ Output

On entry: this must be the same array as supplied to DO2PVF. It must remain unchanged
between calls.

On exit: information about the integration for use on subsequent calls to DO2PCF or other
associated routines.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter PO1 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, an invalid input value for TWANT was detected or an invalid call to DO2PCF was
made, for example without a previous call to the setup routine DO2PVF. If on entry
IFAIL = 0 or -1, the precise form of the error will be detailed on the current error message
unit (as defined by X04AAF). You cannot continue integrating the problem.

IFAIL = 2

This return is possible only when METHOD = 3 has been selected in the preceding call of
DO02PVF. DO2PCF is being used inefficiently because the step size has been reduced
drastically many times to get answers at many values of TWANT. If you really need the
solution at this many points, you should change to METHOD = 2 because it is (much)
more efficient in this situation. To change METHOD, restart the integration from TGOT,
YGOT by a call to DO2PVF. If you wish to continue with METHOD = 3, just call DO2PCF
again without altering any of the arguments other than IFAIL. The monitor of this kind of
inefficiency will be reset automatically so that the integration can proceed.

IFAIL = 3

A considerable amount of work has been expended in the (primary) integration. This is
measured by counting the number of calls to the subroutine F. At least 5000 calls have been
made since the last time this counter was reset. Calls to F in a secondary integration for
global error assessment (when ERRASS = .TRUE. in the call to DO2PVF) are not counted
in this total. The integration was interrupted, so TGOT is not equal to TWANT. If you wish
to continue on towards TWANT, just call DO2PCF again without altering any of the
arguments other than IFAIL. The counter measuring work will be reset to zero
automatically.

IFAIL = 4

It appears that this problem is stiff. The methods implemented in DO2PCF can solve such
problems, but they are inefficient. You should change to another code based on methods
appropriate for stiff problems. The integration was interrupted so TGOT is not equal to
TWANT. If you want to continue on towards TWANT, just call DO2PCF again without
altering any of the arguments other than IFAIL. The stiffness monitor will be reset
automatically.

[NP2478/16] Page 3

DO02PCF D02 - Ordinary Differential Equations

IFAIL = 5

It does not appear possible to achieve the accuracy specified by TOL and THRES in the call
to DO2PVF with the precision available on the computer being used and with this value of
METHOD. You cannot continue integrating this problem. A larger value for METHOD, if
possible, will permit greater accuracy with this precision. To increase METHOD and/or
continue with larger values of TOL and/or THRES, restart the integration from TGOT,
YGOT by a call to DO2PVF.

IFAIL = 6

(This error exit can only occur if ERRASS = .TRUE. in the call to DO2PVF.) The global
error assessment may not be reliable beyond the current integration point TGOT. This may
occur because either too little or too much accuracy has been requested or because f(1,y) is
not smooth enough for values of ¢ just past TGOT and current values of the solution y. The
integration cannot be continued. This return does not mean that you cannot integrate past
TGOT, rather that you cannot do it with ERRASS = .TRUE.. However, it may also indicate
problems with the primary integration.

7. Accuracy

The accuracy of integration is determined by the parameters TOL and THRES in a prior call to
DO2PVF (see the routine document for further details and advice). Note that only the local error
at each step is controlled by these parameters. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate
in various ways, depending on the properties of the differential system.

8. Further Comments

If DO2PCF returns with IFAIL = 5 and the accuracy specified by TOL and THRES is really
required then you should consider whether there is a more fundamental difficulty. For example,
the solution may contain a singularity. In such a region the solution components will usually be
large in magnitude. Successive output values of YGOT and YMAX should be monitored (or
DO2PDF should be used since this takes one integration step at a time) with the aim of trapping
the solution before the singularity. In any case numerical integration cannot be continued through
a singularity, and analytical treatment may be necessary.

Performance statistics are available after any return from DO2PCF by a call to DO2PYF. If
ERRASS = .TRUE. in the call to DO2PVF, global error assessment is available after any return
from DO2PCF (except when IFAIL = 1) by a call to DO2PZF.

After a failure with IFAIL = 5 or 6 the diagnostic routines DO2PYF and DO2PZF may be called
only once.

If DO2PCF returns with IFAIL = 4 then it is advisable to change to another code more suited to
the solution of stiff problems. DO2PCF will not return with IFAIL = 4 if the problem is actually
stiff but it is estimated that integration can be completed using less function evaluations than
already computed.

9. Example
We solve the equation
Y=y, y(0) =0 y(0) =1

reposed as
Yi =,
Y2 ==Y,

over the range [0,27] with initial conditions y, = 0.0 andy, = 1.0. We use relative error control
with threshold values of 1.0E-8 for each solution component and compute the solution at
intervals of length n/4 across the range. We use a low order Runge-Kutta method
(METHOD = 1) with tolerances TOL = 1.0E-3 and TOL = 1.0E-4 in turn so that we may
compare the solutions. The value of 7 is obtained by using X01AAF.

Page 4 [NP2478/16]

D02 — Ordinary Differential Equations D02PCF

Note that the length of WORK is large enough for any valid combination of input arguments to
DO2PVF.

See also the example program for DO2PZF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2PCF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, LENWRK, METHOD
PARAMETER (NEQ=2, LENWRK=32*NEQ, METHOD=1)
real ZERO, ONE, TWO
PARAMETER (ZERO=0.0e0,ONE=1.0e0, TWO=2.0e0)
* .. Local Scalars ..
real HNEXT, HSTART, PI, TEND, TGOT, TINC, TOL, TSTART,
+ TWANT, WASTE
INTEGER I, IFAIL, J, L, NPTS, STPCST, STPSOK, TOTF
LOGICAL ERRASS
* .. Local Arrays
real THRES (NEQ), WORK(LENWRK), YGOT(NEQ), YMAX(NEQ),
+ YPGOT(NEQ), YSTART(NEQ)
* .. External Functions
real X01AAF
EXTERNAL X01AAF
* .. External Subroutines ..
EXTERNAL DO2PCF, DO2PVF, DO2PYF, F
* .. Executable Statements ..

WRITE (NOUT,*) 'DO2PCF Example Program Results’
* Set initial conditions and input for DO2PVF

PI = X01lAAF(ZERO)
TSTART = ZERO
YSTART(1) = ZERO
YSTART(2) = ONE
TEND = TWOXPTI

DO 20 L = 1, NEQ

THRES(L) = 1.0e-8
20 CONTINUE

ERRASS = .FALSE.
HSTART = ZERO

*

Set control for output

NPTS = 8
TINC = (TEND-TSTART)/NPTS

DO 60 I =1, 2
IF (I.EQ.1l) TOL
IF (I.EQ.2) TOL
IFAIL = 0
CALL DO2PVF (NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD,

+ 'Usual Task’,ERRASS, HSTART, WORK, LENWRK, IFAIL)

1.0e-3
1.0e-4

WRITE (NOUT,’(/A,D8.1)’) ’'Calculation with TOL = ’, TOL
WRITE (NOUT,’ (/A/)") ' t vl y2'
WRITE (NOUT,’ (1X,F6.3,2(3X,F7.3))’) TSTART, (YSTART(L),L=1,NEQ)
DO 40 J = NPTS - 1, 0, -1
TWANT = TEND - J*TINC
IFAIL = 1
CALL DO2PCF(F, TWANT, TGOT, YGOT, YPGOT, YMAX, WORK, IFAIL)

[NP2478/16] Page 5

D02PCF

40

+

D02 - Ordinary Differential Equations

WRITE (NOUT,’(1X,F6.3,2(3X,F7.3))’) TGOT, (YGOT(L),L=1,NEQ)

CONTINUE

IFAIL = 0

CALL DO2PYF(TOTF, STPCST,WASTE, STPSOK, HNEXT, IFAIL)

WRITE (NOUT,’(/A,I6)")

! Cost of the integration in evaluations of F is’, TOTF

60 CONTINUE

STOP

END

SUBROUTINE F(T,Y,YP)
Scalar Arguments

real T
. Array Arguments ..
real Y(*), YP(*)

. Executable Statements
YP(l) = Y(2)
YP(2) = -Y(1)
RETURN
END

9.2. Program Data

None.

9.3. Program Results

DO2PCF Example Program Results

Calculation with TOL = 0.1E-02
t vl y2
0.000 0.000 1.000
0.785 0.707 0.707
1.571 0.999 0.000
2.356 0.706 -0.706
3.142 0.000 -0.999
3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of F is 124

Calculation with TOL = 0.1E-03
t vl y2
0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 0.000
2.356 0.707 -0.707
3.142 0.000 -1.000
3.927 -0.707 -0.707
4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000
Cost of the integration in evaluations of F is 235
Page 6 (last) [NP2478/16)

D02 — Ordinary Differential Equations DO02PDF

DO02PDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO2PDF is a one-step routine for solving the initial value problem for a first order system of
ordinary differential equations using Runge-Kutta methods.

2. Specification
SUBROUTINE DO2PDF (F, TNOW, YNOW, YPNOW, WORK, IFAIL)

INTEGER IFAIL
real TNOW, YNOW(*), YPNOW(*), WORK(*)
EXTERNAL F

3. Description

DO2PDF and its associated routines (DO2PVF, DO2PWF, D02PXF, D02PYF, DO2PZF) solve
the initial value problem for a first order system of ordinary differential equations. The routines,
based on Runge-Kutta methods and derived from RKSUITE [1], integrate

y' = f(ty) given y(t,) =y,
where y is the vector of n solution components and ¢ is the independent variable.

DO2PDF is designed to be used in complicated tasks when solving systems of ordinary
differential equations. You must first call DO2PVF to specify the problem and how it is to be
solved. Thereafter you (repeatedly) call DO2PDF to take one integration step at a time from
TSTART in the direction of TEND (as specified in DO2PVF). In this manner DO2PDF returns an
approximation to the solution YNOW and its derivative YPNOW at successive points TNOW. If
DO2PDF encounters some difficulty in taking a step, the integration is not advanced and the
routine returns with the same values of TNOW, YNOW and YPNOW as returned on the previous
successful step. DO2PDF tries to advance the integration as far as possible subject to passing the
test on the local error and not going past TEND. In the call to DO2PVF you can specify either the
first step size for DO2PDF to attempt or that it compute automatically an appropriate value.
Thereafter DO2PDF estimates an appropriate step size for its next step. This value and other
details of the integration can be obtained after any call to DO2PDF by a call to DO2PYF. The
local error is controlled at every step as specified in DO2PVF. If you wish to assess the true error,
you must set ERRASS = .TRUE. in the call to DO2PVF. This assessment can be obtained after
any call to DO2PDF by a call to DO2PZF.

If you want answers at specific points there are two ways to proceed:

(1) The more efficient way is to step past the point where a solution is desired, and then call
DO2PXF to get an answer there. Within the span of the current step, you can get all the
answers you want at very little cost by repeated calls to DO2PXF. This is very valuable
when you want to find where something happens, e.g., where a particular solution
component vanishes. You cannot proceed in this way with METHOD = 3.

(2) The other way to get an answer at a specific point is to set TEND to this value and integrate
to TEND. DO2PDF will not step past TEND, so when a step would carry it past, it will
reduce the step size so as to produce an answer at TEND exactly. After getting an answer
there (TNOW = TEND), you can reset TEND to the next point where you want an answer,
and repeat. TEND could be reset by a call to DO2PVF, but you should not do this. You
should use DO2PWF instead because it is both easier to use and much more efficient. This
way of getting answers at specific points can be used with any of the available methods, but
it is the only way with METHOD = 3. It can be inefficient. Should this be the case, the code
will bring the matter to your attention.

[NP2478/16] . Page 1

DO02PDF D02 - Ordinary Differential Equations

Page 2

References

[1] BRANKIN, R.W., GLADWELL, 1. and SHAMPINE, LF.
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, U.S.A, 1991.

Parameters
F — SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions f; (that is the first derivatives y;) for given values of the
arguments f, y,.

Its specification is:

SUBROUTINE F (T, ¥, YP)

real T, Y(*), YP(*)
1: T -real Input
On entry: the current value of the independent variable, ¢.
2t Y(*) — real array. Input

On entry: the current values of the dependent variables, y; for i = 1,2,...,n.
31 YP(*) — real array. Output
On exit: the values of f; for i = 1,2,...,n.

F must be declared as EXTERNAL in the (sub)program from which DO2PDF is called.
Parameters denoted as I/nput must not be changed by this procedure.

TNOW - real. Output
On exit: the value of the independent variable ¢ at which a solution has been computed.

YNOW (*) — real array. Output
Note: the dimension of YNOW must be at least n.

On exit: an approximation to the solution at TNOW. The local error of the step to TNOW
was no greater than permitted by the specified tolerances (see DO2PVF).

YPNOW((*) — real array. Output
Note: the dimension of YPNOW must be at least n.
On exit: an approximation to the derivative of the solution at TNOW.

WORK (*) — real array. Input/ Output

On entry: this must be the same array as supplied to DO2PVF. It must remain unchanged
between calls.

On exit: information about the integration for use on subsequent calls to DO2PDF or other
associated routines.

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter PO1 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit.

[NP2478/16)

DO02 - Ordinary Differential Equations DO02PDF

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

On entry, an invalid call to DO2PDF was made, for example without a previous call to the
setup routine DO2PVF. If on entry IFAIL = 0 or —1, the precise form of the error will be
detailed on the current error message unit (as defined by X04AAF). You cannot continue
integrating the problem.

IFAIL = 2

DO2PDF is being used inefficiently because the step size has been reduced drastically many
times to obtain answers at many points TEND. If you really need the solution at this many
points, you should use DO2PXF to obtain the answers inexpensively. If you need to change
from METHOD = 3 to do this, restart the integration from TNOW, YNOW by a call to
DO2PVF. If you wish to continue as before, call DO2PDF again. The monitor of this kind of
inefficiency will be reset automatically so that the integration can proceed.

IFAIL = 3

A considerable amount of work has been expended in the (primary) integration. This is
measured by counting the number of calls to the subroutine F. At least 5000 calls have been
made since the last time this counter was reset. Calls to F in a secondary integration for
global error assessment (when ERRASS = .TRUE. in the call to DO2PVF) are not counted
in this total. The integration was interrupted. If you wish to continue on towards TEND, just
call DO2PDF again. The counter measuring work will be reset to zero automatically.

IFAIL = 4

It appears that this problem is stiff. The methods implemented in DO2PDF can solve such
problems, but they are inefficient. You should change to another code based on methods
appropriate for stiff problems. The integration was interrupted. If you want to continue on
towards TEND, just call DO2PDF again. The stiffness monitor will be reset automatically.

IFAIL = 5

It does not appear possible to achieve the accuracy specified by TOL and THRES in the call
to DO2PVF with the precision available on the computer being used and with this value of
METHOD. You cannot continue integrating this problem. A larger value for METHOD, if
possible, will permit greater accuracy with this precision. To increase METHOD and/or
continue with larger values of TOL and/or THRES, restart the integration from TNOW,
YNOW by a call to DO2PVF.

IFAIL = 6

(This error exit can only occur if ERRASS = .TRUE. in the call to DO2PVF.) The global
error assessment may not be reliable beyond the current integration point TNOW. This may
occur because either too little or too much accuracy has been requested or because f(1,y) is
not smooth enough for values of ¢ just beyond TNOW and current values of the solution y.
The integration cannot be continued. This return does not mean that you cannot integrate
past TGOT, rather that you cannot do it with ERRASS = .TRUE.. However, it may also
indicate problems with the primary integration.

[NP2478/16) Page 3

DO2PDF D02 — Ordinary Differential Equations

7.

9.1.

Page 4

Accuracy

The accuracy of integration is determined by the parameters TOL and THRES in a prior call to
DO2PVF (see the routine document for further details and advice). Note that only the local error
at each step is controlled by these parameters. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate
in various ways, depending on the properties of the differential system.

Further Comments

If DO2PDF returns with IFAIL = 5 and the accuracy specified by TOL and THRES is really
required then you should consider whether there is a more fundamental difficulty. For example,
the solution may contain a singularity. In such a region the solution components will usually be
large in magnitude. Successive output values of YNOW should be monitored with the aim of
trapping the solution before the singularity. In any case numerical integration cannot be
continued through a singularity, and analytical treatment may be necessary.

Performance statistics are available after any return from DO2PDF (except when IFAIL = 1) by
a call to DO2PYF. If ERRASS = .TRUE. in the call to DO2PVF, global error assessment is
available after any return from DO2PDF (except when IFAIL = 1) by a call to DO2PZF.

After a failure with IFAIL = 5 or 6 the diagnostic routines DO2PYF and DO2PZF may be called
only once.

If DO2PDF returns with IFAIL = 4 then it is advisable to change to another code more suited to
the solution of stiff problems. DO2PDF will not return with IFAIL = 4 if the problem is actually
stiff but it is estimated that integration can be completed using less function evaluations than
already computed.

Example
We solve the equation
y'=-y, y0)=0y0) =1

reposed as
Yi =2
Y2 =Y,

over the range [0,277] with initial conditions y, = 0.0 andy, = 1.0. We use relative error control
with threshold values of 1.0E-8 for each solution component and print the solution at each
integration step across the range. We use a medium order Runge-Kutta method
(METHOD = 2) with tolerances TOL = 1.0E—4 and TOL = 1.0E-5 in turn so that we may
compare the solutions. The value of 7 is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to
DO2PVF.

See also the example programs for DO2PWF and DO2PXF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2PDF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters .
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, LENWRK, METHOD
PARAMETER (NEQ=2, LENWRK=32*NEQ, METHOD=2)
real ZERO, ONE, TWO
PARAMETER (ZERO=0.0e0,ONE=1.0e0, TWO=2.0e€0)
* .. Local Scalars ..
real HNEXT, HSTART, PI, TEND, TNOW, TOL, TSTART, WASTE
INTEGER I, IFAIL, L, STPCST, STPSOK, TOTF
LOGICAL ERRASS

[NP2478/16)

D02 — Ordinary Differential Equations

*

.. Local Arrays ..

D02PDF

real THRES (NEQ), WORK(LENWRK), YNOW(NEQ), YPNOW(NEQ),
+ YSTART (NEQ)
.. External Functions
real X01AAF
EXTERNAL X01AAF
External Subroutines ..
EXTERNAL DO2PDF, DO2PVF, DO2PYF, F

.. Executable Statements ..
WRITE (NOUT,*) 'DO2PDF Example Program Results’

Set initial conditions and input for DO2PVF

PI = XO1lAAF(ZERO)

TSTART = ZERO

YSTART(1) = ZERO

YSTART(2) = ONE

TEND = TWO*PI

DO 20 L = 1, NEQ
THRES(L) = 1.0e-8

20 CONTINUE
ERRASS
HSTART

.FALSE.
ZERO

DO 60 I =1, 2
IF (I.EQ.1) TOL = 1.0e-4
IF (I.EQ.2) TOL = 1.0e-5
IFAIL = 0
CALL DO2PVF (NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD,

+ ’Complex Task’,ERRASS, HSTART, WORK, LENWRK, IFAIL)
WRITE (NOUT,’(/A,D8.1)’) ‘Calculation with TOL = ’, TOL
WRITE (NOUT,’(/A/)") ' t yl y2’
WRITE (NOUT,’ (1X,F6.3,2(3X,F8.4))’) TSTART, (YSTART(L),L=1,NEQ)
40 CONTINUE
IFAIL = -1

CALL DO2PDF(F, TNOW, YNOW, YPNOW, WORK, IFAIL)

IF (IFAIL.EQ.0) THEN

WRITE (NOUT,’(1X,F6.3,2(3%X,F8.4))’) TNOW, (YNOW(L),L=1,NEQ)

IF (TNOW.LT.TEND) GO TO 40
END IF

IFAIL = 0
CALL DO2PYF(TOTF, STPCST, WASTE, STPSOK, HNEXT, IFAIL)
WRITE (NOUT, ' (/A,I6)")
+ ’ Cost of the integration in evaluations of F is’, TOTF

60 CONTINUE

STOP
END
SUBROUTINE F(T,Y,YP)
.. Scalar Arguments

real T
Array Arguments .
real Y(*), YP(x*)
.. Executable Statements
YP(1l) = Y(2)
YP(2) = -Y(1)
RETURN
END

9.2. Program Data
None.

[NP2478/16]

Page 5

D02PDF

9.3. Program Results

D02 — Ordinary Differential Equations

DO2PDF Example Program Results

Calculation with TOL

AU WNDNHF OO

t

.000
.785
.519
.282
.911
.706
.364
.320
.802
.283

vyl

0.0000
0.7071
0.9987
0.7573
0.2285
-0.
-0
-0
-0
0

5348

.9399
.8209
.4631
.0000

Cost of the integration

Calculation with TOL

DO WWNNDNREFHEFOOO

t

.000
.393
.785
.416
.870
.204
.761
.230
.587
.022
.641
.152
.521
.902
.283

vl

.0000
.3827
.7071
.9881
.9557
.8062
.3711
.0880
.4304
.7710
.9974
.9049
.6903
.3718
.0000

Cost of the integration

0.1E-03

y2

.0000
.7071
.0513
.6531
.9735
.8450
.3414
.5710
.8863
.0000

in evaluations of F is 78
0.1E-04

v2

.0000
.9239
.7071
.1538
.2943
.5916
.9286
.9961
.9026
.6368
.0717
.4256
. 7235
.9283
.0000

in evaluations of F is 118

Page 6 (last)

[NP2478116]

D02 - Ordinary Differential Equations DO02PVF

DO02PVF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO02PVF is a setup routine which must be called prior to the first call of either of the integration routines
DO02PCF and D02PDF.

2 Specification

SUBROUTINE DO2PVF(NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD,

1 TASK, ERRASS, HSTART, WORK, LENWRK, IFAIL)
INTEGER NEQ, METHOD, LENWRK, IFAIL

real TSTART, YSTART(NEQ), TEND, TOL, THRES(NEQ),
1 HSTART, WORK(LENWRK)

LOGICAL ERRASS

CHARACTER#1 TASK

3 Description

DO02PVF and its associated routines (DO2PCF, D02PDF, D02PWF, D02PXF, D02PYF, D02PZF) solve
the initial value problem for a first order system of ordinary differential equations. The routines, based
on Runge-Kutta methods and derived from RKSUITE [1], integrate

Y = f(t,y) given y(ty) = yo
where y is the vector of n solution components and ¢ is the independent variable.

The integration proceeds by steps from the initial point ¢, towards the final point ¢ s- An approximate
solution y is computed at each step. For each component y;,i=1,2,...,n the error made in the step, i.e.,
the local error, is estimated. The step size is chosen automatically so that the integration will proceed
efficiently while keeping this local error estimate smaller than a tolerance that you specify by means of
parameters TOL and THRES.

DO2PCF can be used to solve the ‘usual task’, namely integrating the system of differential equations to
obtain answers at points you specify. DO2PDF is used for all more ‘complicated tasks’.

You should consider carefully how you want the local error to be controlled. Essentially the code uses
relative local error control, with TOL being the desired relative accuracy. For reliable computation, the
code must work with approximate solutions that have some correct digits, so there is an upper bound on
the value you can specify for TOL. It is impossible to compute a numerical solution that is more accurate
than the correctly rounded value of the true solution, so you are not allowed to specify TOL too small for
the precision you are using. The magnitude of the local error in y; on any step will not be greater than
TOL x max(p;, THRES(7)) where p; is an average magnitude of y; over the step. If THRES(¢) is smaller
than the current value of p;, this is a relative error test and TOL indicates how many significant digits
you want in y;. If THRES(7) is larger than the current value of y,, this is an absolute error test with
tolerance TOL x THRES(7). Relative error control is the recommended mode of operation, but pure
relative error control, THRES(?) = 0.0, is not permitted. See Section 8 for further information about
error control.

DO2PCF and D02PDF control local error rather than the true (global) error, the difference between
the numerical and true solution. Control of the local error controls the true error indirectly. Roughly
speaking, the code produces a solution that satisfies the differential equation with a discrepancy bounded
in magnitude by the error tolerance. What this implies about how close the numerical solution is to the
true solution depends on the stability of the problem. Most practical problems are at least moderately
stable, and the true error is then comparable to the error tolerance. To judge the accuracy of the numerical
solution, you could reduce TOL substantially, e.g. use 0.1 x TOL, and solve the problem again. This

[NP3086/18] DO2PVF.1

DO02PVF D02 - Ordinary Differential Equations

will usually result in a rather more accurate solution, and the true error of the first integration can
be estimated by comparison. Alternatively, a global error assessment can be computed automatically
using the parameter ERRASS. Because indirect control of the true error by controlling the local error is
generally satisfactory and because both ways of assessing true errors cost twice, or more, the cost of the
integration itself, such assessments are used mostly for spot checks, selecting appropriate tolerances for
local error control, and exploratory computations.

D02PCF and D02PDF each implement three Runge-Kutta formula pairs, and you must select one for
the integration. The best choice for METHOD depends on the problem. The order of accuracy is 3,5,8,
respectively. As a rule, the smaller TOL is, the larger you should take the value of METHOD. If the
components THRES are small enough that you are effectively specifying relative error control, experience
suggests

TOL efficient METHOD
1072 -10~* 1
1073 -10"° 2
107°— 3

The overlap in the ranges of tolerances appropriate for a given METHOD merely reflects the dependence
of efficiency on the problem being solved. Making TOL smaller will normally make the integration more
expensive. However, in the range of tolerances appropriate to a METHOD, the increase in cost is modest.
There are situations for which one METHOD, or even this kind of code, is a poor choice. You should not
specify a very small value for THRES(¢), when the ith solution component might vanish. In particular,
you should not do this when y; = 0.0. If you do, the code will have to work hard with any value for
METHOD to compute significant digits, but METHOD = 1 is a particularly poor choice in this situation.
All three methods are inefficient when the problem is ‘stiff’. If it is only mildly stiff, you can solve it
with acceptable efficiency with METHOD = 1, but if it is moderately or very stiff, a code designed
specifically for such problems will be much more efficient. The higher the order, i.e., the larger the value
of METHOD, the more smoothness is required of the solution in order for the method to be efficient.

When assessment of the true (global) error is requested, this error assessment is updated at each step. Its
value can be obtained at any time by a call to DO2PZF. The code monitors the computation of the global
error assessment and reports any doubts it has about the reliability of the results. The assessment scheme
requires some smoothness of f(t,y), and it can be deceived if f is insufficiently smooth. At very crude
tolerances the numerical solution can become so inaccurate that it is impossible to continue assessing
the accuracy reliably. At very stringent tolerances the effects of finite precision arithmetic can make it
impossible to assess the accuracy reliably. The cost of this is roughly twice the cost of the integration
itself with METHOD = 2,3, and three times with METHOD = 1.

The first step of the integration is critical because it sets the scale of the problem. The integrator will
find a starting step size automatically if you set the parameter HSTART to 0.0. Automatic selection of
the first step is so effective that you should normally use it. Nevertheless, you might want to specify a
trial value for the first step to be certain that the code recognizes the scale on which phenomena occur
near the initial point. Also, automatic computation of the first step size involves some cost, so supplying
a good value for this step size will result in a less expensive start. If you are confident that you have a
good value, provide it via the parameter HSTART.

4 References
[1] Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge-Kutta codes for

the initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Parameters

1: NEQ — INTEGER Input
On entry: the number of ordinary differential equations in the system to be solved by the integration
routine, n.

Constraint: NEQ > 1.

DO2PVF.2 [NP3086/18]

D02 - Ordinary Differential Equations DO2PVF

10:

11:

TSTART — real Input

On entry: the initial value of the independent variable, 179

YSTART(NEQ) — real array Input

On entry: y,, the initial values of the solution, y; for i = 1,2,, at t,,.

TEND — real Input

On entry: the final value of the independent variable, ¢ ¢» at which the solution is required. TSTART
and TEND together determine the direction of integration.

Constraint: TEND must be distinguishable from TSTART for the method and the precision of the
machine being used.

TOL — real Input
On entry: a relative error tolerance.

Constraint: 10.0 x machine precision < TOL < 0.01.

THRES(NEQ) — real array Input
On entry: a vector of thresholds.

Constraint: THRES(i) > v/, where o is approximately the smallest possible machine number that
can be reciprocated without overflow (see X02AMF).

METHOD — INTEGER Input
On entry: the Runge-Kutta method to be used.

If METHOD = 1 then a 2(3) pair is used;
if METHOD = 2 then a 4(5) pair is used;

if METHOD = 3 then a 7(8) pair is used.
Constraint: 1 < METHOD < 3.

TASK — CHARACTER*1 Input

On entry: determines whether the usual integration task is to be performed using DO2PCF or a
more complicated task is to be performed using DO2PDF.

If TASK = U’ then DO2PCF is to be used for the integration.

If TASK = ’C’ then D02PDF is to be used for the integration.
Constraint: TASK = U’ or ’C’.

ERRASS — LOGICAL Input

On entry: specifies whether a global error assessment is to be computed with the main integration.
ERRASS = .TRUE. specifies that it is.

HSTART — real Input

On entry: a value for the size of the first step in the integration to be attempted. The absolute value
of HSTART is used with the direction being determined by TSTART and TEND. The actual first
step taken by the integrator may be different to HSTART if the underlying algorithm determines that
HSTART is unsuitable. If HSTART = 0.0 then the size of the first step is computed automatically.

Suggested value: HSTART = 0.0.

WORK(LENWRK) — real array Output

On erit: contains information for use by DO2PCF or DO2PDF. This must be the same array as
supplied to DO2PCF or DO2PDF. The contents of this array must remain unchanged between calls.

[NP3086/18] D02PVF.3

DO2PVF D02 - Ordinary Differential Equations

12: LENWRK — INTEGER Input
On entry: the dimension of the array WORK as declared in the (sub)program from which DO2PVF
is called. (LENWRK > 32 x NEQ is always sufficient.)

Constraints:

if TASK = U’ and ERRASS = .FALSE. and
METHOD = 1, LENWRK > 10 x NEQ;
METHOD = 2, LENWRK > 20 x NEQ;
METHOD = 3, LENWRK > 16 x NEQ;
if TASK = ’U’ and ERRASS = .TRUE. and
METHOD = 1, LENWRK > 17 x NEQ;
METHOD = 2, LENWRK > 32 x NEQ};
METHOD = 3, LENWRK > 21 x NEQ};
if TASK = ’C’ and ERRASS = .FALSE. and
METHOD = 1, LENWRK > 10 x NEQ;
METHOD = 2, LENWRK > 14 x NEQ;
METHOD = 3, LENWRK > 16 x NEQ;
if TASK = ’C’ and ERRASS = .TRUE. and
METHOD = 1, LENWRK > 15 x NEQ;
METHOD = 2, LENWRK > 26 x NEQ;
METHOD = 3, LENWRK > 21 x NEQ.

13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL = 1

On entry, NEQ < 1,
or TEND is too close to TSTART,
or TOL > 0.01 or TOL < 10.0 x machine precision,

or THRES(i) < v/o, where ¢ is approximately the smallest possible machine number that
can be reciprocated without overflow (see X02AMF),

or METHOD # 1,2 or 3,

or TASK # U’ or ’C’,

or LENWRK is too small.
7 Accuracy

Not applicable.

D02PVF .4 [NP3086/18]

D02 - Ordinary Differential Equations DO2PVF

8 Further Comments

If TASK = ’C’ then the value of the parameter TEND may be reset during the integration without the
overhead associated with a complete restart; this can be achieved by a call to DO2PWF.

It is often the case that a solution component y; is of no interest when it is smaller in magnitude than a
certain threshold. You can inform the code of this by setting THRES(¢) to this threshold. In this way you
avoid the cost of computing significant digits in y; when only the fact that 7) to this threshold. In this way
you avoid the cost of comit is smaller than the threshold is of interest. This matter is important when
y; vanishes, and in particular, when the initial value YSTART(:) vanishes. An appropriate threshold
depends on the general size of y; in the course of the integration. Physical reasoning may help you select
suitable threshold values. If you do not know what to expect of y, you can find out by a preliminary
integration using DO2PCF with nominal values of THRES. As DO2PCF steps from ¢, towards ¢, for each
i=1,2,...,n it forms YMAX(i), the largest magnitude of y; computed at any step in the integration so
far. Using this you can determine more appropriate values for THRES for an accurate integration. You
might, for example, take THRES(3) to be 10.0x machine precision times the final value of YMAX(7).

9 Example

See Section 9 of the document for DO2PCF, Section 9 of the document for DO2PDF, Section 9 of the
document for DO2PXF, Section 9 of the document for DO2PWF and Section 9 of the document for
D02PZF.

[NP3086/18] DO2PVF.5 (last)

D02 - Ordinary Differential Equations D02PWF

D02PWF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
DO2PWF resets the end-point in an integration performed by DO2PDF.

2. Specification
SUBROUTINE DO2PWF (TENDNU, IFAIL)

INTEGER IFAIL
real TENDNU

3. Description

DO2PWF and its associated routines (DO2PVF, DO2PDF, D0O2PXF, D02PYF, D02PZF) solve
the initial value problem for a first order system of ordinary differential equations. The routines,
based on Runge-Kutta methods and derived from RKSUITE [1], integrate

V' = f(ty) given v(ty) = v,
where y is the vector of n solution components and ¢ is the independent variable.

DO2PWEF is used to reset the the final value of the independent variable, ¢, when the integration
is already underway. It can be used to extend or reduce the range of integration. The new value
must be beyond the current value of the independent variable (as returned in TNOW by
DO02PDF) in the current direction of integration. It is much more efficient to use DOZPWF for
this purpose than to use DO2PVF which involves the overhead of a complete restart of the
integration.

If you want to change the direction of integration then you must restart by a call to DO2PVF.

4. References

[1] BRANKIN, R.W., GLADWELL, 1. and SHAMPINE, L.F.
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, U.S.A, 1991.

5. Parameters
1: TENDNU - real. Input
On entry: the new value for ¢,.

Constraints: sign(TENDNU - TNOW) = sign(TEND - TSTART), where TSTART
and TEND are as supplied in the previous call to DO2PVF and TNOW is
returned by the preceding call to DO2PDF.

TENDNU must be distinguishable from TNOW for the method and the
precision of the machine being used.

2: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP2834117) Page 1

DO02PWF D02 - Ordinary Differential Equations

9.1.

Page 2

IFAIL =1

On entry, an invalid input value for TENDNU was detected or an invalid call to DO2PWF

was made, for example without a previous call to the integration routine DOZPDF. If on

entry IFAIL = 0 or -1, the precise form of the error will be detailed on the current error

message unit (as defined by X04AAF). You cannot continue integrating the problem.
Accuracy

Not applicable.

Further Comments
None.

Example

We integrate a two body problem. The equations for the coordinates (x(¢),y(¢)) of one body as
functions of time 7 in a suitable frame of reference are

X
xl! =

3

Vv 3
Yi=-= r= ,\'2+_v“.

The initial conditions
x(0) =1-g x'(0) =0

WO =0 y(0) = 1
- - 1-€
lead to elliptic motion with 0 < £ < 1. We select € = 0.7 and repose as
Yy =03
Yo =0
vy = 2
. 3
' Yo
Y4 =)

over the range [0,61]. We use relative error control with threshold values of 1.0E-10 for each
solution component and compute the solution at intervals of length x across the range using
DO2PWF to reset the end of the integration range. We use a high order Runge-Kutta method
(METHOD = 3) with tolerances TOL = 1.0E-4 and TOL = 1.0E-5 in turn so that we may
compare the solutions. The value of x is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to
DOZPVF.

Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2PWF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, LENWRK, METHOD
PARAMETER (NEQ=4, LENWRK=32*NEQ, METHOD=3)
real ZERO, ONE, SIX, ECC
PARAMETER (ZERO=0.0e0,0NE=1.0e0,SIX=6.0e0, ECC=0.7e0)

[NP2834117)

DO02 - Ordinary Differential Equations DO2PWF

.. Local Scalars ..

real HNEXT, HSTART, PI, TEND, TFINAL, TINC, TNOW, TOL,
+ TSTART, WASTE
INTEGER I, IFAIL, J, L, NPTS, STPCST, STPSOK, TOTF
LOGICAL ERRASS
* .. Local Arrays ..
real THRES (NEQ), WORK(LENWRK), YNOW(NEQ), YPNOW(NEQ),
+ YSTART(NEQ)
* .. External Functions
real X01lAAF
EXTERNAL X01AAF
* .. External Subroutines ..
EXTERNAL DO02PDF, DO2PVF, DO2PWF, DO2PYF, F
* .. Intrinsic Functions ..
INTRINSIC SQRT

20

*

40

[NP2478/16]

.. Executable Statements ..
WRITE (NOUT,*) ’'DO2PWF Example Program Results’

Set initial conditions and input for DO2PVF

PI = X01lAAF (ZERO)
TSTART = ZERO
YSTART(1) = ONE — ECC
YSTART(2) = ZERO
YSTART(3) = ZERO
YSTART(4) = SQRT((ONE+ECC)/(ONE-ECC))
TFINAL = SIX*PI
DO 20 L = 1, NEQ
THRES(L) = 1.0e-10

CONTINUE
ERRASS = .FALSE.
HSTART = ZERO

Set output control

NPTS = 6
TINC = TFINAL/NPTS

DO 60 I =1, 2
IF (I.EQ.1) TOL
IF (I.EQ.2) TOL
J = NPTS - 1
TEND = TFINAL — J*TINC
IFAIL = 0
CALL DO2PVF(NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD,

1.0e-4
1.0e-5

o

+ 'Complex Task’,ERRASS, HSTART, WORK, LENWRK, IFAIL)
WRITE (NOUT,’(/A,D8.1)’) ’Calculation with TOL = ’, TOL
WRITE (NOUT,’(/A/)’) ’ t yl v2'//

+ ' v3 ya’
WRITE (NOUT,’ (1X,F6.3,4(3X,F8.4))’) TSTART, (YSTART(L), L=1,NEQ)
CONTINUE
IFAIL = -1

CALL DO2PDF (F, TNOW, YNOW, YPNOW, WORK, IFAIL)

IF (IFAIL.EQ.0) THEN
IF (TNOW.LT.TEND) GO TO 40
WRITE (NOUT,’ (1X,F6.3,4(3X,F8.4))’) TNOW, (YNOW(L),L=1,NEQ)
IF (TNOW.LT.TFINAL) THEN
J=J-1
TEND = TFINAL - J*TINC
CALL DO2PWF (TEND, IFAIL)
GO TO 40
END IF
END IF

IFAIL = 0
CALL DO2PYF(TOTF, STPCST, WASTE, STPSOK, HNEXT, IFAIL)

Page 3

DO2PWF DQ2 - Ordinary Differential Equations

WRITE (NOUT,’(/A,I6))
+ ! Cost of the integration in evaluations of F is’, TOTF

60 CONTINUE

STOP
END
SUBROUTINE F(T,Y,YP)
* .. Scalar Arguments
real T
* .. Array Arguments
real Y(*), YP(x*)
* .. Local Scalars
real R
* .. Intrinsic Functions
INTRINSIC SQRT
* .. Executable Statements
R = SQRT(Y(1l)**2+Y(2)**2)
YP(1) Y(3)
YP(2) Y(4)
YP(3) -Y(1l)/R**3
YP(4) =Y (2)/R*x*3
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO2PWF Example Program Results

Calculation with TOL = O0.1E-03
t yl y2 y3 vé
0.000 0.3000 0.0000 0.0000 2.3805
3.142 -1.7000 0.0000 0.0000 -0.4201
6.283 0.3000 0.0000 0.0001 2.3805
9.425 -1.7000 0.0000 0.0000 -0.4201
12.566 0.3000 -0.0003 0.0016 2.3805
15.708 -1.7001 0.0001 -0.0001 -0.4201
18.850 0.3000 -0.0010 0.0045 2.3805

Cost of the integration in evaluations of F is 571

Calculation with TOL = 0.1E-04
t vl y2 v3 vé
0.000 0.3000 0.0000 0.0000 2.3805
3.142 -1.7000 0.0000 0.0000 -0.4201
6.283 0.3000 0.0000 0.0000 2.3805
9.425 -1.7000 0.0000 0.0000 -0.4201
12.566 0.3000 -0.0001 0.0004 2.3805
15.708 -1.7000 0.0000 0.0000 -0.4201
18.850 0.3000 -0.0003 0.0012 2.3805

Cost of the integration in evaluations of F is 748

Page 4 (last) [NP2478/16)

D02 - Ordinary Differential Equations D02PXF

D02PXF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO2PXF computes the solution of a system of ordinary differential equations using interpolation
anywhere on an integration step taken by DO2PDF.

Specification
SUBROUTINE DO2PXF (TWANT, REQEST, NWANT, YWANT, YPWANT, F, WORK,
1 WRKINT, LENINT, IFAIL)
INTEGER NWANT, LENINT, IFAIL
real TWANT, YWANT(*), YPWANT(*), WORK(*), WRKINT(LENINT)
CHARACTER*1 REQEST
EXTERNAL F
Description

DO2PXF and its associated routines (DO2PVF, DO2PDF, DO2PWF, D02PYF, DO2PZF) solve
the initial value problem for a first order system of ordinary differential equations. The routines,
based on Runge-Kutta methods and derived from RKSUITE [1], integrate

V' = f(ty) given v(ty) = y,
where y is the vector of n solution components and ¢ is the independent variable.

DO2PDF computes the solution at the end of an integration step. Using the information computed
on that step DOZPXF computes the solution by interpolation at any point on that step. It cannot
be used if METHOD = 3 was specified in the call to set-up routine DO2PVF.

References

[1] BRANKIN, R.W., GLADWELL, I. and SHAMPINE, L.F.
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, US.A, 1991.

Parameters
TWANT - real. Input
On entry: the value of the independent variable, ¢, where a solution is desired.

REQEST - CHARACTER*1. Input
On entry: determines whether the solution and/or its first derivative are to be computed as
follows:

REQEST = 'S' - compute the approximate solution only;
REQEST = 'D' - compute the approximate first derivative of the solution only;
REQEST = 'B' - compute both the approximate solution and its first derivative.

Constraint: REQEST = 'S, 'D' or 'B'.

NWANT - INTEGER. Input

On entrv: the number of components of the solution to be computed. The first NWANT
components are evaluated

Constraint: 1 £ NWANT < n, where n is specified by NEQ the prior call to DOZPVF.

[NP2834117) Page 1

D02PXF D02 - Ordinary Differential Equations

4. YWANT(*) - real array. Output

Note: when REQEST = 'S' or 'B', the dimension of the array YWANT must be at least
NWANT and at least 1 otherwise.

On exit: an approximation to the first NWANT components of the solution at TWANT if
REQEST = 'S' or 'B'. Otherwise YWANT is not defined.

5. YPWANT (%) — real array. Output

Note: when REQEST = 'D' or 'B', the dimension of the array YPWANT must be at least
NWANT and at least 1 otherwise.

Onexit: an approximation to the first NWANT components of the the first derivative at
TWANT if REQEST = 'D' or 'B'. Otherwise YPWANT is not defined.

6 F - SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions f; (that is the first derivatives y;) for given values of the
arguments £,y,. It must be the same procedure as supplied to DO2PDF.

Its specification is:

SUBROUTINE F (T, Y, YP)

real T, Y(*), YP(*)
1: T -real. Input
On entry: the current value of the independent variable, ¢.
2: Y (%) - real array. Input
On entry: the current values of the dependent variables, v, for i = 12....n.
3 YP(*) - real array. Output

Onexit: the values of f; fori = 1,2...,n.

F must be declared as EXTERNAL in the (sub)program from which DO2PXF is called.
Parameters denoted as Input must not be changed by this procedure.

7 WORK(*) - real array. Input/ Output

On entry: this must be the same array as supplied to DO2PDF and must remain unchanged
between calls.

On exit: contains information about the integration for use on subsequent calls to DO2PDF
or other associated routines.

8: WRKINT(LENINT) - real array. Input/ Output

On entrv: must be the same array as supplied in previous calls, if any, and must remain
unchanged between calls to DO2PXF.

On exit: the contents are modified.

9: LENINT - INTEGER. Input

On entry: the dimension of the array WRKINT as declared in the (sub) program from which
DO2PXF is called.

Constraints: LENINT 2 1 if METHOD = 1 in the prior call to DO2PVF.
LENINT = n + 5xXNWANT if METHOD = 2 and n is specified by NEQ in
the prior call of DOZPVF.

10: IFAIL - INTEGER. Input/ Qutput

On entrv: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

Page 2 [NP2834117)

D02 - Ordinary Differential Equations DO02PXF

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, an invalid input value for NWANT or LENINT was detected or an invalid call to
DO2PXF was made, for example without a previous call to the integration routine DO2PDF,
or after an error return from DO2PDF, or if DO2PDF was being used with METHOD = 3.
If on entry IFAIL = 0 or -1, the precise form of the error will be detailed on the current
error message unit (as defined by X04AAF). You cannot continue integrating the problem.

7. Accuracy
The computed values will be of a similar accuracy to that computed by DO2PDF.

8. Further Comments
None.

9. Example
We solve the equation

y'=-y, y(0) =0 y(0) =1

reposed as
Y1 =2
Y2 = -V

over the range [0,27] with initial conditions y, = 0.0 andy, = 1.0. We use relative error control
with threshold values of 1.0E—8 for each solution component. DO2PDF is used to integrate the
problem one step at a time and DO2PXF is used to compute the first component of the solution
and its derivative at intervals of length 7/8 across the range whenever these points lie in one of
those integration steps. We use a moderate order Runge-Kutta method (METHOD = 2) with
tolerances TOL = 1.0E-3 and TOL = 1.0E—4 in turn so that we may compare the solutions.
The value of 7 is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to
DO2PVF and the length of WRKINT is large enough for any valid value of the argument
NWANT.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2PXF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, NWANT, LENINT, LENWRK, METHOD
PARAMETER (NEQ=2, NWANT=1, LENINT=NEQ+5*NWANT, LENWRK=32*NEQ,
+ METHOD=2)
real ZERO, ONE, TWO
PARAMETER (ZERO=0.0e0,ONE=1.0e0, TWO=2.0e0)

[NP2478/16]) Page 3

D02PXF

*

*

Page 4

20

D02 — Ordinary Differential Equations

.. Local Scalars ..

real HNEXT, HSTART, PI, TEND, TINC, TNOW, TOL, TSTART,
+ TWANT, WASTE

INTEGER I, IFAIL, J, L, NPTS, STPCST, STPSOK, TOTF
LOGICAL ERRASS

.. Local Arrays ..

real THRES(NEQ), WORK(LENWRK), WRKINT(LENINT),
+ YNOW(NEQ), YPNOW(NEQ), YPWANT(NWANT),
+ YSTART(NEQ), YWANT (NWANT)

External Functions ..

real X01AAF

EXTERNAL X01AAF

.. External Subroutines ..

EXTERNAL DO2PDF, DO2PVF, DO2PXF, DO2PYF, F

.. Executable Statements ..
WRITE (NOUT,*) ’'DO2PXF Example Program Results’

Set initial conditions and input for DO2PVF

PI = XO01AAF(ZERO)

TSTART = ZERO

YSTART(1) = ZERO

YSTART(2) = ONE

TEND = TWO*PI

DO 20 L = 1, NEQ
THRES(L) = 1.0e-8

CONTINUE
ERRASS = .FALSE.
HSTART = ZERO

Set output control

NPTS = 16
TINC = TEND/NPTS

DO 80 I =1, 2
IF (I.EQ.1) TOL
IF (I.EQ.2) TOL

1.0e-3
1.0e-4

o

IFAIL = 0
CALL DOZ2PVF (NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD,

+ 'Complex Task’,ERRASS, HSTART, WORK, LENWRK, IFAIL)

40

60

WRITE (NOUT,’(/A,D8.1)’) ’Calculation with TOL = ’, TOL
WRITE (NOUT,’(/A/)") ' t vl yirer
WRITE (NOUT,’(1X,F6.3,2(3X,F8.4))’) TSTART, (YSTART(L),L=1,NEQ)

J = NPTS - 1
TWANT = TEND - J*TINC

CONTINUE
IFAIL = -1
CALL DO2PDF (F, TNOW, YNOW, YPNOW, WORK, IFAIL)

IF (IFAIL.EQ.0) THEN

CONTINUE
IF (TWANT.LE.TNOW) THEN
IFAIL = O
CALL DO2PXF (TWANT, ' Both’ , NWANT, YNANT, YPWANT, F, WORK,
+ WRKINT, LENINT, IFAIL)
WRITE (NOUT,’ (1X,F6.3,2(3X,F8.4))’) TWANT, YWANT(1),
+ YPWANT(1)
J=J-1
TWANT = TEND — J*TINC
GO TO 60
END IF
IF (TNOW.LT.TEND) GO TO 40
END IF

[NP2478/16)

D02 - Ordinary Differential Equations

80

IFAIL = 0
CALL DO2PYF(TOTF, STPCST, WASTE, STPSOK, HNEXT, IFAIL)
WRITE (NOUT,’(/A,I6)’)

D02PXF

+ ! Cost of the integration in evaluations of F is’, TOTF

CONTINUE

STOP

END

SUBROUTINE F(T,Y,YP)
Scalar Arguments

real T
. Array Arguments
real Y(*), YP(*)

. Executable Statements
YP(1l) = Y(2)
YP(2) = -Y(1)
RETURN
END

9.2. Program Data

None.

9.3. Program Results

DO2PXF Example Program Results
Calculation with TOL = 0.1E-02
t yl yl’
0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3826
1.571 1.0000 -0.0001
1.963 0.9238 ~-0.3828
2.356 0.7070 -0.7073
2.749 0.3825 -0.9240
3.142 -0.0002 -0.9999
3.534 -0.3829 -0.9238
3.927 -0.7072 -0.7069
4.320 -0.9239 -0.3823
4.712 -0.9999 0.0004
5.105 -0.9236 0.3830
5.498 -0.7068 0.7073
5.890 -0.3823 0.9239
6.283 0.0004 0.9998

Cost of the integration in evaluations of F is 68
Calculation with TOL = 0.1E-03
t vl y1l’
0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.178 0.9239 0.3827
1.571 1.0000 0.0000
1.963 0.9239 -0.3827
2.356 0.7071 -0.7071
2.749 0.3827 -0.9239
3.142 0.0000 -1.0000
3.534 -0.3827 -0.9239
3.927 -0.7071 -0.7071
4.320 -0.9239 -0.3827
4.712 -1.0000 0.0000
5.105 -0.9238 0.3827

[NP2478/16)

Page 5

DO02PXF DQ2 - Ordinary Differential Equations

5.498 -0.7071 0.7071
5.890 -0.3826 0.9239
6.283 0.0000 1.0000

Cost of the integration in evaluations of F is 105

Page 6 (last) [NP2478/16)

DO2 - Ordinary Differential Equations DO2PYF

DO02PYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
DO2PYF provides details about an integration performed by either DO2PCF or DO2PDF.

2. Specification
SUBROUTINE DO2PYF (TOTFCN, STPCST, WASTE, STPSOK, HNEXT, IFAIL)

INTEGER TOTFCN, STPCST, STPSOK, IFAIL
real WASTE, HNEXT

3. Description
DO2PYF and its associated routines (DO2PCF, DO2PDF, DO2PVF, DO02PWF, DO02PXF,
DO2PZF) solve the initial value problem for a first order system of ordinary differential
equations. The routines, based on Runge-Kutta methods and derived from RKSUITE [1],
integrate
y' = f(ty) given y(t5) =y,
where y is the vector of n solution components and ¢ is the independent variable.

After a call to DO2PCF or DO2PDF, DO2PYF can be called to obtain information about the cost
of the integration and the size of the next step.

4. References

[1] BRANKIN, R.W., GLADWELL, 1. and SHAMPINE, L.F.
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, U.S.A, 1991.

5. Parameters
TOTFCN - INTEGER. Output

On exit: the total number of evaluations of f used in the primary integration so far; this does
not include evaluations of f for the secondary integration specified by a prior call to
D02PVF with ERRASS = .TRUE..

2: STPCST - INTEGER. Output

On exit: the cost in terms of number of evaluations of f of a typical step with the method
being used for the integration. The method is specified by the parameter METHOD in a
prior call to DO2PVF.

3: WASTE - real. Output

Onexit: the number of attempted steps that failed to meet the local error requirement
divided by the total number of steps attempted so far in the integration. A “large” fraction
indicates that the integrator is having trouble with the problem being solved. This can
happen when the problem is “stiff”” and also when the solution has discontinuities in a low
order derivative.

4. STPSOK - INTEGER. Output
On exit: the number of accepted steps.

5: HNEXT - real. Output
On exit: the step size the integrator will attempt to use for the next step.

[NP2478/16] Page 1

DO2PYF DO2 - Ordinary Differential Equations

6: IFAIL - INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

An invalid call to DO2PYF has been made, for example without a previous call to DO2PCF
or DO2PDF. If on entry IFAIL = 0 or -1, the precise form of the error will be detailed on
the current error message unit (as defined by X04AAF). You cannot continue integrating
the problem.

7. Accuracy
Not applicable.

8. Further Comments

When a secondary integration has taken place, that is when global error assessment has been
specified using ERRASS = .TRUE. in a prior call to DO2PVF, then the approximate extra
number of evaluations of f used is given by 2xSTPSOKXSTPCST for METHOD = 2 or 3 and
3xSTPSOKxXSTPCST for METHOD = 1.

9. Example
See the example programs for DO2PCF, DO2PDF, DO2PWF, DO2PXF and DO2PZF.

Page 2 (last) [NP2478/16]

D02 - Ordinary Differential Equations DO2PZF

DO02PZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

w

Purpose

DO2PZF provides details about global error assessment computed during an integration with
either DO2PCF or DO2PDF.

Specification
SUBROUTINE DO2PZF (RMSERR, ERRMAX, TERRMX, WORK, IFAIL)
INTEGER IFAIL
real RMSERR (*), ERRMAX, TERRMX, WORK(*)
Description

DO02PZF and its associated routines (DO2PCF, DO2PDF, D02PVF, D02PWF, D02PXF,
DO2PYF) solve the initial value problem for a first order system of ordinary differential
equations. The routines, based on Runge-Kutta methods and derived from RKSUITE [1],
integrate

y' = f(ty) given y(t5) = y,
where y is the vector of n solution components and ¢ is the independent variable.

After a call to DO2PCF or DO02PDF, DO2PZF can be called for information about error
assessment, if this assessment was specified in the setup routine DO2PVF. A more accurate
“true” solution y is computed in a secondary integration. The error is measured as specified in
DO2PVF for local error control. At each step in the primary integration, an average magnitude y,
of component y; is computed, and the error in the component is

lyi-¥:1
max(u; THRES (i)) "

It is difficult to estimate reliably the true error at a single point. For this reason the RMS
(root-mean-square) average of the estimated global error in each solution component is
computed. This average is taken over all steps from the beginning of the integration through to
the current integration point. If all has gone well, the average errors reported will be comparable
to TOL (see DO2PVF). The maximum error seen in any component in the integration so far and
the point where the maximum error first cccurred are also reported.

References

[1] BRANKIN, R.W., GLADWELL, I. and SHAMPINE, L.F.
RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs.
SoftReport 91-S1, Department of Mathematics, Southern Methodist University, Dallas, TX
75275, U.S.A, 1991.

Parameters
RMSERR(*) — real array. Output
Note: the dimension of the array RMSERR must be at least n.

On exit: RMSERR (i) approximates the RMS average of the true error of the numerical
solution for the ith solution component, for i = 1,2,...,n. The average is taken over all steps
from the beginning of the integration to the current integration point.

ERRMAX - real. Output

On exit: the maximum weighted approximate true error taken over all solution components
and all steps.

[NP2478/16}) Page 1

DO02PZF DQ2 - Ordinary Differential Equations

w

Page 2

TERRMX - real. Output

On exit: the first value of the independent variable where an approximate true error attains
the maximum value, ERRMAX.

WORK(*) — real array. Input

On entry: this must be the same array as supplied to DO2PCF or DO2PDF and must remain
unchanged between calls.

IFAIL — INTEGER. Input/ Output

Onentry. IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

An invalid call to DO2PZF has been made, for example without a previous call to DO2PCF
or DO2PDF, or without error assessment having been specified in a call to DO2PVF. If on
entry IFAIL = 0 or -1, the precise form of the error will be detailed on the current error
message unit (as defined by X04AAF). You cannot continue integrating the problem.

Accuracy
Not applicable.

Further Comments

If the integration has proceeded “well” and the problem is smooth enough, stable and not too
difficult then the values returned in the arguments RMSERR and ERRMAX should be
comparable to the value of TOL specified in the prior call to DO2PVF.

Example

We integrate a two body problem. The equations for the coordinates (x(z),y(¢)) of one body as
functions of time ¢ in a suitable frame of reference are

o= X

r3

y' = _;y?, r= Yxi4yl.

The initial conditions
x(0) =1-¢ x'(0) =0

y©0) =0, y(0) = /"

lead to elliptic motion with 0 < £ < 1. We select € = 0.7 and repose as

Y1 =Y;
Y2 = Y4
, _ N
Y3 = -3

[NP2478116]

D02 — Ordinary Differential Equations DO02PZF

over the range [0,37]. We use relative error control with threshold values of 1.0E—-10 for each
solution component and a high order Runge-Kutta method (METHOD = 3) with tolerance
TOL = 1.0E—6. The value of & is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to
DO2PVF. Note also, for illustration purposes since it is not necessary for this problem, we choose

to integrate the to the end of the range regardless of efficiency concerns (i.e. returns from
DO2PCF with IFAIL = 2,3.4).

9.1. Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2PZF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, LENWRK, METHOD
PARAMETER (NEQ=4, LENWRK=32*NEQ, METHOD=3)
real ZERO, ONE, THREE, ECC
PARAMETER (ZERO=0.0e0,ONE=1,0e0, THREE=3,0e0, ECC=0.7e0)
* .. Local Scalars ..
real ERRMAX, HNEXT, HSTART, PI, TEND, TERRMX, TGOT,
+ TOL, TSTART, TWANT, WASTE
INTEGER IFAIL, L, STPCST, STPSOK, TOTF
LOGICAL ERRASS
* .. Local Arrays ..
real RMSERR(NEQ), THRES(NEQ), WORK(LENWRK), YGOT(NEQ),
+ YMAX(NEQ), YPGOT(NEQ), YSTART(NEQ)
* .. External Functions
real X01AAF
EXTERNAL X01AAF
* .. External Subroutines ..
EXTERNAL DO2PCF, DO2PVF, DO2PYF, DO2PZF, F
* .. Intrinsic Functions ..
INTRINSIC SQRT
* .. Executable Statements ..

WRITE (NOUT, *) ’‘DO2PZF Example Program Results’
* Set initial conditions and input for DO2PVF

PI = X0lAAF(ZERO)
TSTART = ZERO

YSTART(1) = ONE - ECC

YSTART(2) = ZERO

YSTART(3) = ZERO

YSTART(4) = SQRT((ONE+ECC)/(ONE-ECC))

TEND = THREE#*PI
DO 20 L = 1, NEQ
THRES(L) = 1.0e-10
20 CONTINUE

ERRASS = .TRUE.

HSTART = ZERO

TOL = 1.0e-6

IFAIL = 0

CALL DOZPVF(NEQ, TSTART, YSTART, TEND, TOL, THRES, METHOD, ' Usual Task’,
+ ERRASS, HSTART, WORK, LENWRK, IFAIL)

WRITE (NOUT,’(/A,D8.1)’) ’Calculation with TOL = ’, TOL
WRITE (NOUT,’(/A/)") ' t yl v2'//
r y3 y4l
WRITE (NOUT,'(1X,F6.3,4(3X,F8.4))’) TSTART, (YSTART(L),L=1,NEQ)

+

[NP2478/16] Page 3

DO02PZF

TWANT = TEND

40 CONTINUE
IFAIL = 1
CALL DO2PCF(F, TWANT, TGOT, YGOT, YPGOT, YMAX, WORK, IFAIL)

IF (IFAIL.GE.2 .AND. IFAIL.LE.4) THEN
GO TO 40
ELSE IF (IFAIL.NE.O) THEN

DO02 - Ordinary Differential Equations

WRITE (NOUT,’(A,I2)’) ’ DO2PCF returned with IFAIL set to’,

+ IFAIL
ELSE

WRITE (NOUT,’ (1X,F6.3,4(3X,F8.4))’) TGOT, (YGOT(L),L=1,NEQ)

IFAIL = 0
CALL DO2PZF (RMSERR, ERRMAX, TERRMX, WORK, IFAIL)
WRITE (NOUT,’ (/A/9X,4(2X,E9.2))")

+ ’ Componentwise error ’//’assessment’, (RMSERR(L),L=1,NEQ)
WRITE (NOUT,’'(/A,E9.2,A,F6.3)")
+ ’ Worst global error observed ’//’was ’, ERRMAX,
+ ! — it occurred at T = ', TERRMX
*
IFAIL = 0

CALL DO2PYF(TOTF, STPCST,WASTE, STPSOK, HNEXT, IFAIL)
WRITE (NOUT,’ (/A,I6)")

+ ' Cost of the integration in evaluations of F is’, TOTF

END IF

STOP
END
SUBROUTINE F(T,Y,YP)
* .. Scalar Arguments ..

real
real
real

INT

T
Array Arguments ..
Y(*), YP(*)
Local Scalars ..
R
Intrinsic Functions ..
RINSIC SQRT
Executable Statements

R = SQRT(Y(1)**2+4Y(2)*%2)

YP(1) = Y(3)

YP(2) = Y(4)

YP(3) = —Y(1)/R**3
YP(4) = —Y(2)/R**3
RETURN

END

9.2. Program Data

None.

9.3. Program Results

DO2PZF Example Program Results

Calculation with TOL = 0.1E-05
t vl y2 y3 v4
0.000 0.3000 0.0000 0.0000 2.3805
9.425 -1.7000 0.0000 0.0000 -0.4201

Componentwise error assessment
0.38E-05 0.71E-05 0.69E-05 0.21E-05

Worst global error observed was 0.34E-04 - it occurred at T =

Cost of the integration in evaluations of F is 1361

6.302

Page 4 (last)

[NP2478/16)

D02 - Ordinary Differential Equation D02QFF

D02QFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO2QFF is a routine for integrating a non-stiff system of first order ordinary differential
equations using a variable-order variable-step Adams method. A root-finding facility is provided.

2. Specification
SUBROUTINE DO2QFF (FCN, NEQF, T, Y, TOUT, G, NEQG, ROOT, RWORK,

1 LRWORK, IWORK, LIWORK, IFAIL)
INTEGER NEQF, NEQG, LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real T, Y(NEQF), TOUT, G, RWORK(LRWORK)
LOGICAL ROOT
EXTERNAL FCN, G
3. Description

Given the initial values x,y,,y,,....yxgor the routine integrates a non-stiff system of first order
differential equations of the type, y; = f;(x,y,,¥5,-Yngqe). fori = 1,2,..,NEQF, fromx = Tto
x = TOUT using a variable-order variable-step Adams method. The system is defined by a
subroutine FCN supplied by the user, which evaluates f; in terms of x and y,,y,,....yngqr» and
Y1:¥2,--Yneqr are supplied at x = T. The routine is capable of finding roots (values of x) of
prescribed event functions of the form

gi(xyy) =0, j = 12,.,NEQG.

Each g; is considered to be independent of the others so that roots are sought of each g f
individually. The root reported by the routine will be the first root encountered by any g - Two
techniques for determining the presence of a root in an integration step are available: the
sophisticated method described in Watts [3] and a simplified method whereby sign changes in
each g; are looked for at the ends of each integration step. The event functions are defined by a
real function G supplied by the user which evaluates g; in terms of X,y ...,y nggr a0d ¥',....Y Ngog-
In one-step mode the routine returns an approximation to the solution at each integration point. In
interval mode this value is returned at the end of the integration range. If a root is detected this
approximation is given at the root. The user selects the mode of operation, the error control, the
root-finding technique and various optional inputs by a prior call of the setup routine DO2QWF.

For a description of the practical implementation of an Adams formula see Shampine and Gordon
[1] and Shampine and Watts [2].

4. References
[1] SHAMPINE, L.F. and GORDON, MK.
Computer Solution of Ordinary Differential Equations — The Initial Value Problem.
WH Freeman & Co., San Fransisco, 1975.
[2] SHAMPINE, LF. and WATTS, H.A.
DEPAC — Design of a user oriented package of ODE solvers.
Sandia National Laboratory Report SAND79-2374, 1979.

[3] WATTS, H.A.
RDEAM - An Adams ODE Code with Root Solving Capability.
Sandia National Laboratory Report SANDS85-1595, 1985.

[NP1692/14) Page 1

D02QFF D02 — Ordinary Differential Equation

5. Parameters

1: FCN - SUBROUTINE, supplied by the user. External Procedure
FCN must evaluate the functions f; (that is the first derivatives y!) for given values of its
arguments X, ¥, Y-y NgQs-
Its specification is:

| SUBROUTINE FCN(NEQF, X, Y, F)

INTEGER NEQF
real X, Y(NEQF), F(NEQF)
1: NEQF - INTEGER. Input
On entry: the number of differential equations.
22 X —real Input
On entry: the current value of the argument x.
3: Y(NEQF) — real array. Input
On entry: the current value of the argument y,, for i = 1,2,...,NEQF.
4: F(NEQF) — real array. Output
On exit: the value of f;, for i = 1,2,....NEQF.

FCN must be declared as EXTERNAL in the (sub)program from which DO2QFF is called.
Parameters denoted as /nput must not be changed by this procedure.

2: NEQF - INTEGER. Input

On entry: the number of first order ordinary differential equations to be solved by DO2QFF.
It must contain the same value as the parameter NEQF used in a prior call of DO2QWF.

Constraint. NEQF 2 1.

33 T -—real Input! OQutput

On entry: after a call to DO2QWF with STATEF = 'S' (i.e. an initial entry), T must be set
to the initial value of the independent variable x.

On exit: the value of x at which y has been computed. This may be an intermediate output
point, a root, TOUT or a point at which an error has occurred. If the integration is to be
continued, possibly with a new value for TOUT, T must not be changed.

4. Y(NEQF) - real array. Input/ Output
On entry: the initial values of the solution y,.,y,,..., ¥ xgqr-

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TOUT, these values must not be changed.

5. TOUT - real. Input

On entry: the next value of x at which a computed solution is required. For the initial T, the
input value of TOUT is used to determine the direction of integration. Integration is
permitted in either direction. If TOUT = T on exit, TOUT must be reset beyond T in the
direction of integration, before any continuation call.

6: G — real FUNCTION, supplied by the user. External Procedure
G must evaluate a given component of g(x,y,y") at a specifed point.

If root-finding is not required the actual argument for G must be the dummy routine
DO02QFZ. (D02QFZ is included in the NAG Fortran Library and so need not be supplied by
the user. Its name may be implemention dependent: see the Users’ Note for your
implementation for details.)

Page 2 [NP1692/14]

D02 - Ordinary Differential Equation D02QFF

10:

11:

Its specification is:

real FUNCTION G(NEQF, X, ¥, YP, K)
INTEGER NEQF, K
real X, Y(NEQF), YP(NEQF)
'1: NEQF — INTEGER. Input
On entry: the number of differential equations being solved.
22 X —real Input
On entry: the current value of the independent variable.
3: Y(NEQF) - real array. Input
On entry: the current values of the dependent variables.
4: YP(NEQF) — real array. Input
On entry: the current values of the derivatives of the dependent variables.
5: K — INTEGER. Input

| On entry: the component of g which must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which DO2QFF is called.
Parameters denoted as Inpur must not be changed by this procedure.

NEQG — INTEGER. Input

Onentry: the number of event functions which the user is defining for root-finding. If
root-finding is not required the value for NEQG must be < 0. Otherwise it must be the same
parameter NEQG used in the prior call to DO2QWF.

ROOT - LOGICAL. Output

On exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies whether
or not the output value of the parameter T is a root of one of the event functions. If
ROOT = .FALSE., then no root was detected, whereas ROOT = .TRUE. indicates a root
and the user should make a call to DO2QYF for further information.

If root-finding was not required (NEQG = 0 on entry) then on exit ROOT = .FALSE..

RWORK (LRWORK) — real array. Workspace

This must be the same parameter RWORK as supplied to DO2QWF. It is used to pass
information from DO2QWF to DO2QFF, and from DO2QFF to D02QXF, D02QYF and
DO02QZF. Therefore the contents of this array must not be changed before the call to
DO2QFF or calling any of the routines DO2QXF, D02QYF and D0O2QZF.

LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO02QFF is called.

This must be the same parameter LRWORK as supplied to DO2QWF.

IWORK (LIWORK) — INTEGER array. Workspace

This must be the same parameter INORK as supplied to DO2QWF. It is used to pass
information from D02QWF to DO2QFF, and from DO02QFF to D02QXF, D02QYF and
DO02QZF. Therefore the contents of this array must not be changed before the call to
DO02QFF or calling any of the routines D02QXF, D02QYF and DO2QZF.

[NP1692/14] Page 3

D02QFF D02 - Ordinary Differential Equation

12: LIWORK - INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO2QFF is called.

This must be the same parameter LIWORK as supplied to DO2QWF.

13: IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry the integrator detected an illegal input, or DO2QWF has not been called prior to
the call to the integrator. If on entry IFAIL = 0 or —1, the form of the error will be detailed
on the current error message unit (as defined by X04AAF).

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL = 2

The maximum number of steps has been attempted (at a cost of about 2 calls to FCN per
step). (See parameter MAXSTP in DO2QWF.) If integration is to be continued then the
user need only reset IFAIL and call the routine again and a further MAXSTP steps will be
attempted.

IFAIL = 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See parameter TOLFAC in D02QXF.)

IFAIL = 4

Some error weight w, became zero during the integration (see parameters VECTOL, RTOL
and ATOL in DO2QWF.) Pure relative error control (ATOL = 0.0) was requested on a
variable (the ith) which has now become zero. (See parameter BADCMP in DO2QXF.)
The integration was successful as far as T.

IFAIL = 5

The problem appears to be stiff (see the Chapter Introduction for a discussion of the term
‘stiff’). Although it is inefficient to use this integrator to solve stiff problems, integration
may be continued by resetting IFAIL and calling the routine again.

IFAIL = 6

A change in sign of an event function has been detected but the root-finding process appears
to have converged to a singular point T rather than a root. Integration may be continued by
resetting IFAIL and calling the routine again.

IFAIL = 7

The code has detected two successive error exits at the current value of T and cannot
proceed. Check all input variables.

Page 4 [NP1692/14]

D02 — Ordinary Differential Equation D02QFF

7. Accuracy

The accuracy of integration is determined by the parameters VECTOL, RTOL and ATOL in a
prior call to DO2QWF. Note that only the local error at each step is controlled by these
parameters. The error estimates obtained are not strict bounds but are usually reliable over one
step. Over a number of steps the overall error may accumulate in various ways, depending on the
properties of the differential equation system. The code is designed so that a reduction in the
tolerances should lead to an approximately proportional reduction in the error. The user is
strongly recommended to call DO2QFF with more than one set of tolerances and to compare the
results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around
zero a relative error test should be avoided, whereas if the solution is exponentially increasing an
absolute error test should not be used. If different accuracies are required for different
components of the solution then a component-wise error test should be used. For a description of
the error test see the specifications of the parameters VECTOL, ATOL and RTOL in the routine
document for DO2QWF.

The accuracy of any roots located will depend on the accuracy of integration and may also be
restricted by the numerical properties of g(x,y,y’). When evaluating g the user should try to write
the code so that unnecessary cancellation errors will be avoided.

8. Further Comments

If the routine fails with IFAIL = 3 then the combination of ATOL and RTOL may be so small
that a solution cannot be obtained, in which case the routine should be called again with larger
values for RTOL and/or ATOL. If the accuracy requested is really needed then the user should
consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
The routine could be used in one-step mode to monitor the size of the solution with the aim
of trapping the solution before the singularity. In any case numerical integration cannot be
continued through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine
will require a very small stepsize to preserve stability. This will usually be exhibited by
excessive computing time and sometimes an error exit with IFAIL = 3, but usually an error
exit with IFAIL = 2 or 5. The Adams methods are not efficient in such cases and the user
should consider using a routine from the DO2M-DO02N subchapter. A high proportion of
failed steps (see parameter NFAIL in DO2QXF) may indicate stiffness but there may be
other reasons for this phenomenon.

DO02QFF can be used for producing results at short intervals (for example, for graph plotting);
the user should set CRIT = .TRUE. and TCRIT to the last output point required in a prior call
to DO2QWF and then set TOUT appropriately for each output point in turn in the call to
DO02QFF.

9. Example
We solve the equation
y' ==y, y0) =0 y(0) =1

reposed as
Vi =2
Y3 ==Y,

over the range [0,10.0] with initial conditions y, = 0.0 and y, = 1.0 using vector error control
(VECTOL = .TRUE.) and computation of the solution at TOUT = 10.0 with
TCRIT = 10.0 (CRIT = .TRUE.). Also, we use DO2QFF to locate the positions where
¥, = 0.0 or where the first component has a turning point, that is y; = 0.0.

[NP1692/14] Page 5

D02QFF D02 - Ordinary Differential Equation

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2QFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQF, NEQG, LATOL, LRTOL, LRWORK, LIWORK
PARAMETER (NEQF=2, NEQG=2, LATOL=NEQF, LRTOL=NEQF,
+ LRWORK=23+23+*NEQF+14*NEQG, LIWORK=21+4*NEQG)
real TSTART, HMAX
PARAMETER (TSTART=0.0e0, HMAX=0.0e0)
* .. Local Scalars ..
real HLAST, HNEXT, T, TCRIT, TCURR, TOLFAC, TOUT
INTEGER BADCMP, I, IFAIL, INDEX, MAXSTP, NFAIL, NSUCC,
+ ODLAST, ODNEXT, TYPE
LOGICAL ALTERG, CRIT, ONESTP, ROOT, SOPHST, VECTOL
CHARACTER*1 STATEF
* .. Local Arrays ..
real ATOL(LATOL), RESIDS(NEQG), RTOL(LRTOL),
+ RWORK (LRWORK), Y(NEQF), YP(NEQF)
INTEGER EVENTS(NEQG), IWORK(LIWORK)
* .. External Functions .
real GTRYO02
EXTERNAL GTRY02
* .. External Subroutines ..
EXTERNAL DO2QFF, DO2QWF, DO2QXF, DO02QYF, FTRY02
* .. Executable Statements

WRITE (NOUT,*) ’'DO2QFF Example Program Results’
TCRIT = 10.0e0

STATEF = 'S’

VECTOL = .TRUE.

ONESTP = .FALSE.

CRIT = .TRUE.

MAXSTP = 0

SOPHST = .TRUE.

DO 20 I = 1, NEQF
RTOL(I) = 1.0e-4
ATOL(I) = 1.0e-6

20 CONTINUE

IFAIL = 0

CALL DO2QWF (STATEF, NEQF, VECTOL, ATOL, LATOL, RTOL, LRTOL, ONESTP, CRIT,
+ TCRIT, HMAX, MAXSTP, NEQG, ALTERG, SOPHST, RWORK, LRWORK,
+ IWORK, LIWORK, IFAIL)

T = TSTART
TOUT = TCRIT

Y(1) = 0.0e0
Y(2) = 1.0e0
*
40 IFAIL = -1

CALL DO2QFF(FTRY0Z2,NEQF,T,Y, TOUT,GTRY02, NEQG, ROOT, RWORK, LRWORK,
+ IWORK, LIWORK, IFAIL)

IF (IFAIL.EQ.0O) THEN
CALL DO2QXF (NEQF,YP, TCURR, HLAST, HNEXT, ODLAST, ODNEXT, NSUCC,
+ NFAIL, TOLFAC, BADCMP, RWORK, LRWORK, IWORK, LIWORK,
+ IFAIL)

IF (ROOT) THEN

Page 6 [NP1692/14]

D02 — Ordinary Differential Equation

D02QFF

CALL DO2QYF (NEQG, INDEX, TYPE, EVENTS, RESIDS, RWORK, LRWORK,

+ IWORK, LIWORK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, 99999) '"Root at ’, T

WRITE (NOUT, 99998) ’for event equation ’, INDEX,

+ ’ with type’, TYPE, ’ and residual ',

WRITE (NOUT, 99999) ’ Y(1) = ', Y(1),
DO 60 I = 1, NEQG
IF (I.NE.INDEX) THEN
IF (EVENTS(I).NE.O) THEN

Y7 (1) =

RESIDS (INDEX)

YP(1)

WRITE (NOUT, 99998) ’‘and also for event equation ',
’ and residual ',

+ I, ’ with type’, EVENTS(I),
+ RESIDS(I)
END IF
END IF
60 CONTINUE
IF (TCURR.LT.TOUT) GO TO 40
END IF
END IF
STOP

99999 FORMAT (1X,A,1P,el3.5,A,1P,el3.5)
99998 FORMAT (1X,A,I2,A,I3,A,1P,el3.5)
END

SUBROUTINE FTRYO2(NEQF,T,Y,YP)

* .. Scalar Arguments ..

real T

INTEGER NEQF
* .. Array Arguments ..

real Y(NEQF), ¥YP(NEQF)
* .. Executable Statements

YP(1l) = Y(2)

YP(2) = -Y(1)

RETURN

END

real FUNCTION GTRYQO2(NEQF,T,Y,YP,K)

* .. Scalar Arguments

real T

INTEGER K, NEQF
* .. Array Arguments ..

real Y(NEQF), YP(NEQF)
* .. Executable Statements

IF (K.EQ.1l) THEN
GTRY0Z2 = YP(1)
ELSE
GTRY02 = Y(1)
END IF
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO2QFF Example Program Results
Root at 0.00000E+00

for event equation 2 with type 1 and residual
Y(1) = 0.00000E+00 Y (1) = 1.00000E+00

Root at 1.57076E+00

for event equation 1 with type 1 and residual
Y(1) = 1.00003E+00 Y’ (1) = -5.90965E-16

[NP1692/14]

0.00000E+00

-5.90965E-16

Page 7

D02QFF

Root at 3.14151E+00
for event equation 2
Y(1) = -1.24023E-16
Root at 4.71228E+00

for event equation 1
Y(1) = -1.00010E+00

Root at 6.28306E+00
for event equation 2

Y(1) = 2.43942E-15
Root at 7.85379E+00
for event equation 1

Y(1) = 9.99970E-01
Root at 9.42469E+00

for event equation 2
Y(1) = -2.72748E-15

with type
Y'(1l) =

with type
Y (1) =

with type
Y (1) =

with type
Y (1) =

with type
Y (1) =

DO02 — Ordinary Differential Equation

1 and residual
-1.00012E+00

1 and residual
3.61473E-16

1 and residual
9.99979E-01

1 and residual
—-2.49722E-16

1 and residual
-9.99854E-01

.24023E-16

.61473E-16

.43942E-15

.49722E-16

.72748E-15

Page 8 (last)

[NP1692/14)

D02 — Ordinary Differential Equations D02QGF

D02QGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

DO02QGF is a reverse communication routine for integrating a non-stiff system of first order
ordinary differential equations using a variable-order variable-step Adams method. A root-
finding facility is provided.

2. Specification
SUBROUTINE DO2QGF (NEQF, T, Y, TOUT, NEQG, ROOT, IREVCM, TRVCM,

1 YRVCM, YPRVCM, GRVCM, KGRVCM, RWORK, LRWORK,
2 IWORK, LIWORK, IFAIL)

INTEGER NEQF, NEQG, IREVCM, YRVCM, YPRVCM, KGRVCM, LRWORK,
1 IWORK(LIWORK), LIWORK, IFAIL

real T, Y(NEQF), TOUT, TRVCM, GRVCM, RWORK(LRWORK)
LOGICAL ROOT

3. Description

Given the initial values x,y;,y,,...yngqr the routine integrates a non-stiff system of first order
differential equations of the type, y; = f;(X,y,,Y5,--¥ngqe)> fori = 1,2,..NEQF, fromx = T to
x = TOUT using a variable-order variable-step Adams method. The user defines the system by
reverse communication, evaluating f; in terms of x and y,,y,,....yngqr> 804 ¥1,Y2....YNgor ar€
supplied at x = T by DO2QGF. The routine is capable of finding roots (values of x) of
prescribed event functions of the form

gj(xyy) =0, j = 12,..NEQG.

Each g; is considered to be independent of the others so that roots are sought of each g;
individually. The root reported by the routine will be the first root encountered by any g - Two
techniques for determining the presence of a root in an integration step are available: the
sophisticated method described in Watts [3] and a simplified method whereby sign changes in
each g, are looked for at the ends of each integration step. The user also defines each g i by
reverse communication. In one-step mode the routine returns an approximation to the solution at
each integration point. In interval mode this value is returned at the end of the integration range.
If a root is detected this approximation is given at the root. The user selects the mode of
operation, the error control, the root-finding technique and various optional inputs by a prior call
of the setup routine DO2QWF.

For a description of the practical implementation of an Adams formula see Shampine and Gordon

[1].

4. References
[1] SHAMPINE, L.F. and GORDON, M.K.
Computer Solution of Ordinary Differential Equations — The Initial Value Problem.
W.H. Freeman & Co., San Francisco, 1975.
[2] SHAMPINE, L.F. and WATTS, H.A.
DEPAC — Design of a user oriented package of ODE solvers.
Sandia National Laboratory Report SAND79-2374, 1979.

[3] WATTS, H.A.
RDEAM - An Adams ODE Code with Root Solving Capability.
Sandia National Laboratory Report SANDS85-1595, 1985.

[NP2136/15] Page 1

D02QGF D02 - Ordinary Differential Equations

Page 2

Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate
exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between
intermediate exits and re-entries, all parameters other than RWORK and GRVCM must
remain unchanged.

NEQF - INTEGER. Input

On initial entry: the number of first order ordinary differential equations to be solved by
DO02QGF. It must contain the same value as the parameter NEQF used in the prior call to
D02QWEF.

Constraint: NEQF 2 1.

T — real. Input/ Output

Oninitial entry: that is after a call to DO2QWF with STATEF = 'S', T must be set to the
initial value of the independent variable x.

On final exit: the value of x at which y has been computed. This may be an intermediate
output point, a root, TOUT or a point at which an error has occurred. If the integration is to
be continued, possibly with a new value for TOUT, T must not be changed.

Y (NEQF) — real array. Input/ Output
Oninitial entry: the initial values of the solution y,,y,,....yNggr-

On final exit: the computed values of the solution at the exit value of T. If the integration is
to be continued, possibly with a new value for TOUT, these values must not be changed.

TOUT - real. Input

On initial entry: the next value of x at which a computed solution is required. For the initial
T, the input value of TOUT is used to determine the direction of integration. Integration is
permitted in either direction. If TOUT = T on exit, TOUT must be reset beyond T in the
direction of integration, before any continuation call.

NEQG - INTEGER. Input

On initial entry: the number of event functions which the user is defining for root-finding. If
root-finding is not required the value for NEQG must be < 0. Otherwise it must be the same
value as the parameter NEQG used in the prior call to DO2QWF.

ROOT — LOGICAL. Output

On final exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies
whether or not the output value of the parameter T is a root of one of the event functions.
If ROOT = .FALSE,, then no root was detected, whereas ROOT = .TRUE. indicates a
root and the user should make a call to DO2QYF for further information.

If root-finding was not required (NEQG = 0 on entry), then ROOT = .FALSE..

IREVCM - INTEGER. Input/ Output
On initial entry: IREVCM must have the value 0.

On intermediate exit. IREVCM specifies what action the user must take before re-entering
D02QGF with IREVCM unchanged. The possible values of IREVCM on exit from
D02QGF are 1, 2,3, 4,5,6,7, 8,9, 10, 11, 12 which should be interpreted as follows:

IREVCM =1,2,3,4,5,60r7

indicates that the user must supply y’ = f(x,y), where x is given by TRVCM and y; is
returned in Y(), for i=12,.,NEQF when YRVCM =0 and
RWORK(YRVCM+i-1), for i = 1,2,...NEQF when YRVCM = 0. y! should be
placed in location RWORK(YPRVCM+i-1), fori = 1,2,...NEQF.

[NP2136/15)

D02 — Ordinary Differential Equations D02QGF

IREVCM = 8

indicates that the current step was not succesful due to error test failure. The only
information supplied to the user on this return is the current value of the independent
variable T, as given by TRVCM. No values must be changed before re-entering
DO02QGF. This facility enables the user to determine the number of unsuccessful steps.

IREVCM =9, 10, 11, or 12

indicates that the user must supply g, (x,y,y’), where k is given by KGRVCM, x is
given by TRVCM, y; is given by Y (i) and y; is given by RWORK (YPRVCM-1+i).
The result g, should be placed in the variable GRVCM.

On final exit: IREVCM has the value 0, which indicates that an output point or root has been
reached or an error has occurred (see IFAIL).

8: TRVCM - real. Output

On intermediate exit. the current value of the independent variable.

9: YRVCM - INTEGER. Output

On intermediate exit. with IREVCM =1, 2, 3,4, 5,6, 7, 9, 10, 11 or 12, YRVCM
specifies the locations of the dependent variables y for use in evaluating the differential
system or the event functions. If YRVCM = 0 then y, is given by Y(i), for
i =12,.NEQF. If YRVCM # 0 then y, is given by RWORK(YRVCM+i-1), for
i =1,2,. ,NEQF.

10: YPRVCM - INTEGER. Output

On intermediate exit: with IREVCM = 1, 2, 3, 4, 5, 6, or 7, YPRVCM specifies the
positions in RWORK at which the user should place the derivatives y’. y; should be placed
in location RWORK (YPRVCM+i-1), fori = 1,2,...,NEQF.

With IREVCM = 9, 10, 11 or 12, YPRVCM specifies the locations of the derivatives y’
for use in evaluating the event functions. y; is given by RWORK(YPRVCM+i-1), for
i = 1,2,..,NEQF. YPRVCM must not be changed before re-entering DO2QGF.

11: GRVCM - real. Input

On intermediate re-entry: with IREVCM = 9, 10, 11 or 12, GRVCM must contain the
value of g, (x,y,y"), where k is given by KGRVCM.

122 KGRVCM - INTEGER. Output

On intermediate exit. with IREVCM = 9, 10, 11 or 12, KGRVCM specifies which event
function g, (x,y,y’) the user must evaluate.

13: RWORK(LRWORK) - real array. Workspace

This must be the same parameter RWORK as supplied to DO2QWEF. It is used to pass
information from D0O2QWF to D02QGF, and from D0O2QGF to the D02QXF, DO2QYF and
D02QZF. Therefore the contents of this array must not be changed before the call to
DO02QGEF or calling any of the routines DO2QXF, D02QYF and D02QZF.

14: LRWORK - INTEGER. Input

On initial entry: the dimension of the array RWORK as declared in the (sub)program from
which DO2QGEF is called.

This must be the same parameter LRWORK as supplied to DO2QWF.

[NP2136/15] Page 3

D02QGF D02 - Ordinary Differential Equations

15: IWORK(LIWORK) — INTEGER array. Workspace

This must be the same parameter INORK as supplied to DO2QWF. It is used to pass
information from DO2QWF to D02QGF, and from D02QGF to D02QXF, D02QYF and
DO02QZF. Therefore the contents of this array must not be changed before the call to
DO02QGEF or calling any of the routines DO2QXF, D02QYF and D02QZF.

16: LIWORK - INTEGER. Input

On initial entry: the dimension of the array IWORK as declared in the (sub)program from
which DO2QGEF is called.

This must be the same parameter LIWORK as supplied to DO2QWF.

17: IFAIL — INTEGER. Input/ Output

On initial entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this
parameter should refer to Chapter P01 for details.

Onfinal exit: IFAIL = O unless the routine detects an error or gives a warning (see
Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

6. Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, the integrator detected an illegal input, or DO2QWF has not been called prior to
the call to the integrator. If on entry IFAIL = 0 or —1, the form of the error will be detailed
on the current error message unit (as defined by X04AAF).

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL = 2

The maximum number of steps has been attempted (at a cost of about 2 derivative
evaluations per step). (See parameter MAXSTP in DO2QWF.) If integration is to be
continued then the user need only reset IFAIL and call the routine again and a further
MAXSTP steps will be attempted.

IFAIL = 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See parameter TOLFAC in D02QXF.)

IFAIL = 4

Some error weight w, became zero during the integration (see parameters VECTOL, RTOL

‘and ATOL in DO2QWF.) Pure relative error control (ATOL = 0.0) was requested on a
variable (the ith) which has now become zero. (See parameter BADCMP in D02QXF.)
The integration was successful as far as T.

IFAIL = 5

The problem appears to be stiff (see the Chapter Introduction for a discussion of the term
‘stiff’). Although it is inefficient to use this integrator to solve stiff problems, integration
may be continued by resetting IFAIL and calling the routine again.

Page 4 [NP2136/15]

D02 — Ordinary Differential Equations D02QGF

IFAIL = 6
A change in sign of an event function has been detected but the root-finding process appears

to have converged to a singular point T rather than a root. Integration may be continued by
resetting IFAIL and calling the routine again.

IFAIL = 7

The code has detected two successive error exits at the current value of T and cannot
proceed. Check all input variables.

7. Accuracy

The accuracy of integration is determined by the parameters VECTOL, RTOL and ATOL in a
prior call to DO2QWF. Note that only the local error at each step is controlled by these
parameters. The error estimates obtained are not strict bounds but are usually reliable over one
step. Over a number of steps the overall error may accumulate in various ways, depending on the
property of the differential equation system. The code is designed so that a reduction in the
tolerances should lead to an approximately proportional reduction in the error. The user is
strongly recommended to call DO2QGF with more than one set of tolerances and to compare the
results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around
zero a relative error test should be avoided, whereas if the solution is exponentially increasing an
absolute error test should not be used. If different accuracies are required for different
components of the solution then a component-wise error test should be used. For a description of
the error test see the specifications of the parameters VECTOL, ATOL and RTOL in the routine
document for DO2QWEF.

The accuracy of any roots located will depend on the accuracy of integration and may also be
restricted by the numerical properties of g(x,y,y’). When evaluating g the user should try to write
the code so that unnecessary cancellation errors will be avoided.

8. Further Comments

If the routine fails with IFAIL = 3 then the combination of ATOL and RTOL may be so small
that a solution cannot be obtained, in which case the routine should be called again with larger
values for RTOL and/or ATOL. If the accuracy requested is really needed then the user should
consider whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude.
The routine could be used in one-step mode to monitor the size of the solution with the aim
of trapping the solution before the singularity. In any case numerical integration cannot be
continued through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine
will require a very small step size to preserve stability. This will usually be exhibited by
excessive computing time and sometimes an error exit with IFAIL = 3, but usually an error
exit with IFAIL = 2 or 5. The Adams methods are not efficient in such cases and the user
should consider using a routine from the subchapter DO2M-DO2N. A high proportion of
failed steps (see parameter NFAIL in DO2QXF) may indicate stiffness but there may be
other reasons for this phenomenon.

D02QGF can be used for producing results at short intervals (for example, for graph plotting);
the user should set CRIT = .TRUE. and TCRIT to the last output point required in a prior call
to DO2QWF and then set TOUT appropriately for each output point in turn in the call to
DO02QGF.

[NP2136/15] Page 5

D02QGF

9.

9.1.

Page 6

D02 - Ordinary Differential Equations

We solve the following system (for a projectile)

cos ¢

Example
y = tan¢
= —0-032ang _ 0.02v
- 14
, _ —0.032
o ="

v

over an interval [0.0,10.0] starting with values y = 0.5, v = 0.5 and ¢ = a/5 using scalar error
control (VECTOL = .FALSE.) until the first point where y = 0.0 is encountered.

Also, we use DO2QGEF to produce output at intervals of 2.0.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*

* Mark 14 Revised.

DO02QGF Example Program Text

NAG Copyright 1989.

* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQF, NEQG, LATOL, LRTOL, LRWORK, LIWORK
PARAMETER (NEQF=3, NEQG=1, LATOL=1, LRTOL=1,
+ LRWORK=23+23*NEQF+14*NEQG, LIWORK=21+4*NEQG)
real TSTART, HMAX
PARAMETER (TSTART=0.0e0, HMAX=2.0e0)
* Local Scalars ..
real GRVCM, PI, T, TCRIT, TINC, TOUT, TRVCM
INTEGER I, IFAIL, IREVCM, J, KGRVCM, MAXSTP, YPRVCM,
+ YRVCM
LOGICAL ALTERG, CRIT, ONESTP, ROOT, SOPHST, VECTOL
CHARACTER*1 STATEF
* .. Local Arrays ..
real ATOL(LATOL), RTOL(LRTOL), RWORK(LRWORK), Y(NEQF)
INTEGER IWORK(LIWORK)
* .. External Functions
real X01AAF
EXTERNAL X01AAF
* External Subroutines ..
EXTERNAL DO02QGF, DO2QWF
* Intrinsic Functions ..
INTRINSIC COS, real, TAN

WRITE (NOUT, *)
TCRIT = 10.0e0
STATEF s’
VECTOL .FALSE.
RTOL(1) 1.0e-4
ATOL(1) 1.0e-7
ONESTP .FALSE.
SOPHST . TRUE.
CRIT .TRUE.
TINC 2.0e0
MAXSTP = 500

PI
T =
Y(1)
Y(2)
Y(3)
WRITE
WRITE
WRITE
IFAIL

]

TSTART

0.5e0
0.5e€0
0.2e0*PI
(NOUT, *)
(NOUT, x) *

o

0

(NOUT, 99999) T,

Executable Statements ..
"DO2QGF Example Program Results’

X01AAF(0.0e0)

T Y(1)

(Y(I),I=1,NEQF)

Y(2) Y(3)'

[NP2136115)

D02 — Ordinary Differential Equations D02QGF

CALL DO2QWF (STATEF, NEQF, VECTOL, ATOL, LATOL, RTOL, LRTOL, ONESTP, CRIT,

+ TCRIT, HMAX, MAXSTP, NEQG, ALTERG, SOPHST, RWORK, LRWORK,
+ IWORK, LIWORK, IFAIL)
*
Jg=1
TOUT = real(J)*TINC
IREVCM = 0
*
20 IFAIL = -1

CALL DO2QGF (NEQF, T, Y, TOUT, NEQG, ROOT, IREVCM, TRVCM, YRVCM, YPRVCM,
+ GRVCM, KGRVCM, RWORK, LRWORK, IWORK, LIWORK, IFAIL)

IF (IREVCM.GT.0) THEN
IF (IREVCM.LT.8) THEN
IF (YRVCM.EQ.0) THEN
RWORK(YPRVCM) = TAN(Y(3))
RWORK(YPRVCM+1) = —0.032e0*TAN(Y(3))/Y(2) - 0.02e0*Y(2)
+ /COS(Y(3))
RWORK (YPRVCM+2) = —0.032e0/Y(2)**2
ELSE
RWORK (YPRVCM) = TAN(RWORK(YRVCM+2))
RWORK (YPRVCM+1) = —0.032e0*TAN(RWORK(YRVCM+2))

+ /RWORK(YRVCM+1) — 0.02e0*RWORK(YRVCM+1)
+ /COS (RWORK (YRVCM+2))
RWORK (YPRVCM+2) = —0.032e¢0/RWORK(YRVCM+1)**2
END IF

ELSE IF (IREVCM.GT.8) THEN
GRVCM = Y(1)
END IF
GO TO 20
ELSE IF (IFAIL.EQ.O) THEN
WRITE (NOUT,99999) T, (Y(I),I=1,NEQF)
IF (T.EQ.TOUT .AND. J.LT.5) THEN
J=J+ 1
TOUT = real(J)*TINC
GO TO 20
END IF
END IF
STOP
*
99999 FORMAT (1X,F6.4,3X,3(F7.4,2X))
END

9.2. Program Data
None.

9.3. Program Results
DO02QGF Example Program Results

T Y(1) Y(2) Y(3)
0.0000 0.5000 0.5000 0.6283
2.0000 1.5493 0.4055 0.3066
4.0000 1.7423 0.3743 -0.1289
6.0000 1.0055 0.4173 -0.5507
7.2883 0.0000 0.4749 -0.7601

[NP2136/15) Page 7 (last)

D02 — Ordinary Differential Equations D02QWF

D02QWF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

w

Purpose

DO02QWEF is a setup routine which must be called by the user prior to the first call of either of the
integration routines DO2QFF and DO02QGF, and may be called prior to any subsequent
continuation call to these routines.

Specification
SUBROUTINE DO2QWF (STATEF, NEQF, VECTOL, ATOL, LATOL, RTOL, LRTOL,
1 ONESTP, CRIT, TCRIT, HMAX, MAXSTP, NEQG, ALTERG,
2 SOPHST, RWORK, LRWORK, IWORK, LIWORK, IFAIL)
INTEGER NEQF, LATOL, LRTOL, MAXSTP, NEQG, LRWORK,
1 IWORK (LIWORK), LIWORK, IFAIL
real ATOL (LATOL), RTOL(LRTOL), TCRIT, HMAX,
1 RWORK (LRWORK)
LOGICAL VECTOL, ONESTP, CRIT, ALTERG, SOPHST

CHARACTER*1 STATEF

Description

This routine permits initialisation of the integration method and setting of optional inputs prior to
any call of DO2QFF or D02QGF.

It must be called before the first call of either of the routines DO2QFF or D02QGF and it may be
called before any continuation call of either of the routines DO2QFF or DO2QGF.

References
None.

Parameters
STATEF — CHARACTER*1. Input/ Output

On entry: specifies whether that the integration routine (DO2QFF or DO2QGF) is to start a
new system of ordinary differential equations, restart a system or continue with a system.
STATEEF is interpreted as follows:

STATEF ='S' start integration with a new differential system;
‘R’ restart integration with the current differential system;
'C' continue integration with the current differential system.

Constraint: STATEF = 'S',s', R, ', 'C' or ¢'.
On exit: STATEF is set to 'C', except that if an error is detected, STATEF is unchanged.

NEQF — INTEGER. Input

On entry: the number of ordinary differential equations to be solved by the integration
routine. NEQF must remain unchanged on subsequent calls to DO02QWF with
STATEF = 'C'or R'.

Constraint: NEQF 2 1.

VECTOL - LOGICAL. Input

On entry: specifies whether vector or scalar error control is to be employed for the local
error test in the integration.

If VECTOL = .TRUE.,, then vector error control will be used and the user must specify
values of RTOL (i) and ATOL(i), for i = 1,2,...,NEQF.

[NP2136/15] Page 1

DO02QWF

»

6:

=

10:

Page 2

DO02 — Ordinary Differential Equations

Otherwise scalar error control will be used and the user must specify values of just

RTOL(1) and ATOL(1).
The error test to be satisfied is of the form

F e; 2
() <o

i=1 i

where w; is defined as follows:

VECTOL w,
.TRUE. RTOL(i) X|y;| + ATOL(i)
.FALSE. RTOL(1)x[y,| + ATOL(1)

and e, is an estimate of the local error in y,, computed internally. VECTOL must remain

unchanged on subsequent calls to DO2QWF with STATEF = 'C' or 'R'.

ATOL(LATOL) - real array.
On entry: the absolute local error tolerance (see VECTOL).

Constraint: ATOL(i) = 0.0.

LATOL — INTEGER.

Input

Input

On entry: the dimension of the array ATOL as declared in the (sub)program from which

DO2QWEF is called.

Constraints: LATOL 2 NEQF if VECTOL = .TRUE,,

LATOL 2 1 if VECTOL = .FALSE..

RTOL(LRTOL) — real array.
On entry: the relative local error tolerance (see VECTOL).

Constraints: RTOL(i) 2 0.0,

RTOL(i) 2 4.0xmachine precision if ATOL(i) = 0.0.

LRTOL — INTEGER.

Input

Input

On entry: the dimension of the array RTOL as declared in the (sub)program from which

DO02QWEF is called.

Constraints: LRTOL 2 NEQF if VECTOL = .TRUE.,

LRTOL 2 1 if VECTOL = .FALSE..

ONESTP - LOGICAL.

Input

Onentry: the mode of operation of the integration routine. If ONESTP = .TRUE., the
integration routine will operate in one-step mode, that is it will return after each successful
step. Otherwise the integration routine will operate in interval mode, that is it will return at

the end of the integration interval.

CRIT - LOGICAL.

Input

On entry: specifies whether or not there is a value for the independent variable beyond
which integration is not to be attempted. Setting CRIT = -TRUE. indicates that there is

such a point, whereas CRIT = .FALSE. indicates that there is no such restriction.

TCRIT - real.

Input

On entry: with CRIT = .TRUE., TCRIT must be set to a value of the independent variable
beyond which integration is not to be attempted. Otherwise TCRIT is not referenced.

[NP2136/15]

D02 — Ordinary Differential Equations D02QWF

11:

14:

16:

18:

[NP2136/15]

HMAX - real. Input

On entry: it HMAX # 0.0 then a bound on the absolute step size during the integration is
taken to be |[HMAX|. If HMAX = 0.0 on entry, then no bound is assumed on the step size
during the integration.

A bound may be required if there are features of the solution on very short ranges of
integration which may be missed. The user should try HMAX = 0.0 first.

Note: this parameter only affects the step size if the option CRIT = .TRUE. is being used.

MAXSTP - INTEGER. Input

Onentry: a bound on the number of attempted steps in any one call to the integration
routine. If MAXSTP < 0 on entry, a value of 1000 is used.

NEQG — INTEGER. Input

Onentry: specifies whether or not root-finding is required in DO2QFF or D02QGF. If
NEQG < 0 then no root-finding is attempted. If NEQG > 0 then root-finding is required
and NEQG event functions will be specified for the integration routine.

ALTERG — LOGICAL. Input/ Output

On entry: specifies whether or not the event functions have been redefined. ALTERG need
not be set if STATEF = 'S'. On subsequent calls to DO2QWF, if NEQG has been set
positive, then ALTERG = .FALSE. specifies that the event functions remain unchanged,
whereas ALTERG = .TRUE. specifies that the event functions have changed. Because of
the expense in reinitialising the root searching procedure, ALTERG should be set to .TRUE.
only if the event functions really have been altered. ALTERG need not be set if the
root-finding option is not used.

On exit: ALTERG is set to .FALSE..

SOPHST — LOGICAL. Input

On entry: the type of search technique to be used in the root-finding. If SOPHST = .TRUE.
then a sophisticated and reliable but expensive technique will be used, whereas for
SOPHST = .FALSE. a simple but less reliable technique will be used. If NEQG < 0 then
SOPHST is not referenced.

RWORK(LRWORK) — real array. Workspace

This must be the same parameter RWORK supplied to the integration routine. It is used to
pass information to the integration routine and therefore the contents of this array must not
be changed before calling the integration routine.

LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO2QWEF is called.

Constraint: LRWORK 2 21x(1+NEQF) + 2xJ + KxXNEQG + 2, where
_ |NEQF if VECTOL = .TRUE.

I= 1 if VECTOL = FALSE.
and
K = 14 if SOPHST = .TRUE.
~ | 5 if SOPHST = FALSE.
IWORK(LIWORK) — INTEGER array. Workspace

This must be the same parameter IWORK supplied to the integration routine. It is used to
pass information to the integration routine and therefore the contents of this array must not
be changed before calling the integration routine.

Page 3

D02QWF DO2 - Ordinary Differential Equations

19:

20:

LIWORK — INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO2QWEF is called.

Constraints: LIWORK 2 21 + 4xNEQG if SOPHST = .TRUE,,
LIWORK 2 21 + NEQG if SOPHST = .FALSE..

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
Illegal input detected.

Accuracy
Not applicable.

Further Comments

Prior to a continuation call of the integration routine, the user may reset any of the optional
parameters by calling DO2QWF with STATEF = 'C'. The user may reset:

(a) HMAX — to alter the maximum step size selection;

(b) RTOL,ATOL — to change the error requirements;

(¢) MAXSTP — to increase or decrease the number of attempted steps before
an error exit is returned;

(d) ONESTP — to change the operation mode of the integration routine;

(e) CRIT,TCRIT — to alter the point beyond which integration must not be

attempted; and
to alter the number and type of event functions, and also the
search method.

If the behaviour of the system of differential equations has altered and the user wishes to restart
the integration method from the value of T output from the integration routine, then STATEF
should be set to 'R' and any of the optional parameters may be reset also. If the user wants to
redefine the system of differential equations or start a new integration problem, then STATEF
should be set to 'S'. Resetting STATEF to R' or 'S’ on normal continuation calls causes a restart
in the integration process, which is very inefficient when not needed.

(f) NEQG,ALTERG,SOPHST

Example
See example programs for DO2QFF and D02QGF.

Page 4 (last) [NP2136/15]

D02 - Ordinary Differential Equations D02QXF

D02QXF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

DO02QXF is a diagnostic routine which may be called after a call to either of the integration
routines DO2QFF and D02QGF.

Specification
SUBROUTINE DO2QXF (NEQF, YP, TCURR, HLAST, HNEXT, ODLAST, ODNEXT,
1 NSUCC, NFAIL, TOLFAC, BADCMP, RWORK, LRWORK,
2 IWORK, LIWORK, IFAIL)
INTEGER NEQF, ODLAST, ODNEXT, NSUCC, NFAIL, BADCMP,
1 LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real YP (NEQF), TCURR, HLAST, HNEXT, TOLFAC,
1 RWORK (LRWORK)
Description

This routine permits the user to extract information about the performance of one of DO2QFF or
DO02QGF. It may only be called after a call to DO2QFF or DO2QGF.

References
None.

Parameters
NEQF — INTEGER. Input

On entry. the number of first order ordinary differential equations solved by the integration
routine. It must be the same parameter NEQF supplied to the setup routine DO2QWF and
the integration routines DO2QFF or D02QGF.

YP(NEQF) — real array. Output

On exir: the approximate derivative of the solution component y,, as supplied in y, on output
from the integration routine at the output value of T. These values are obtained by the
evaluation of y' = f(x,y) except when the output value of the parameter T in the call to the
integration routine is TOUT and TCURR # TOUT, in which case they are obtained by
interpolation.

TCURR - real. Output

On exit: the value of the independent variable which the integrator has actually reached.
TCURR will always be at least as far as the output value of the argument T (from the
integration routine) in the direction of integration, but may be further.

HLAST - real. Output
On exit: the last successful step size used by the integrator.

HNEXT - real. Output
On exit: the next step size which the integration routine would attempt.

ODLAST - INTEGER. Output
On exit: the order of the method last used (successfully) by the integration routine.

[NP1692/14] Page 1

D02QXF D02 — Ordinary Differential Equations

7:

10:

11:

12:

13:

14:

15:

16:

Page 2

ODNEXT - INTEGER. Output
On exit: the order of the method which the integration routine would attempt on the next
step.

NSUCC - INTEGER. Output

On exit: the number of steps attempted by the integration routine that have been successful
since the start of the current problem.

NFAIL - INTEGER. Output

On exit: the number of steps attempted by the integration routine that have failed since the
start of the current problem.

TOLFAC - real. Output

Onexit: a tolerance scale factor, TOLFAC 2 1.0, returned when the integration routine
exits with IFAIL = 3. If RTOL and ATOL are uniformly scaled up by a factor of TOLFAC
and DO2QWEF is called, the next call to the integration routine is deemed likely to succeed.

BADCMP — INTEGER. Output

On exit: if the integration routine returned with IFAIL = 4, then BADCMP specifies the
index of the component which forced the error exit. Otherwise BADCMP is 0.

RWORK(LRWORK) - real array. Workspace

This must be the same parameter RWORK as supplied to DO2QFF or DO2QGEF. It is used
to pass information from the integration routine to DO2QXF and therefore the contents of
this array must not be changed before calling DO2QXF.

LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO02QXEF is called.

This must be the same parameter LRWORK as supplied to DO2QWF.

IWORK (LIWORK) — INTEGER array. Workspace

This must be the same parameter INORK as supplied to DO2QFF or DO2QGF. It is used to
pass information from the integration routine to DO2QXF and therefore the contents of this
array must not be changed before calling DO2QXF.

LIWORK - INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO02QXF is called.

This must be the same parameter LIWORK as supplied to DO2QWF.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP1692114)

D02 — Ordinary Differential Equations D02QXF

IFAIL = 1

An integration routine (D02QFF or D02QGF) has not been called or one or more of the
parameters LRWORK, LIWORK and NEQF does not match the corresponding parameter
supplied to DO2QWF.

This error exit may be caused by overwriting elements of RWORK.

7. Accuracy
Not applicable.

8. Further Comments
The user should call DO2QYF for information about any roots detected by DO2QFF or DO2QGF.

9. Example
See example program for DO2QFF.

[NP1692/14] Page 3 (last)

DO2 — Ordinary Differential Equations D02QYF

D02QYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

w

Purpose

DO02QYF is a diagnostic routine which may be called after a call to the integrator routines
DO02QFF or DO2QGF.

Specification
SUBROUTINE DO2QYF (NEQG, INDEX, TYPE, EVENTS, RESIDS, RWORK, LRWORK,
1 IWORK, LIWORK, IFAIL)
INTEGER NEQG, INDEX, TYPE, EVENTS (NEQG), LRWORK,
1 IWORK(LIWORK), LIWORK, IFAIL
real RESIDS (NEQG), RWORK (LRWORK)
Description

This routine should be called only after a call to one of routines DO2QFF and D02QGEF results in
the output value ROOT = .TRUE.,, indicating that a root has been detected. DO2QYF permits
the user to examine information about the root detected, such as the indices of the event
equations for which there is a root, the type of root (odd or even) and the residuals of the event
equations.

References
None.

Parameters
NEQG - INTEGER. Input

On entry: the number of event functions defined for the integration routine. It must be the
same parameter NEQG supplied to the setup routine DO2QWF and to the integration routine
(DO2QFF or D02QGEF).

INDEX - INTEGER. Output
Onexit: the index k of the event equation g,(x,y,y") = 0 for which the root has been
detected.

TYPE - INTEGER. Output

On exit: information about the root detected for the event equation defined by INDEX. The
possible values of TYPE with their interpretations are as follows:

TYPE = 1
a simple root, or lack of distinguishing information available;
TYPE = 2

a root of even multiplicity is believed to have been detected, that is no change in sign
of the event function was found; ‘

TYPE = 3
a high order root of odd multiplicity;
TYPE = 4

a possible root, but due to high multiplicity or a clustering of roots accurate evaluation
of the event function was prohibited by roundoff error and/or cancellation.

In general, the accuracy of the root is less reliable for values of TYPE > 1.

[NP1692/14] Page 1

D02QYF D02 - Ordinary Differential Equations

4:

10:

Page 2

EVENTS(NEQG) — INTEGER array. Output

On exit: information about the kth event function on a very small interval containing the
root, T, as output from the integration routine. All roots lying in this interval are considered
indistinguishable numerically and therefore should be regarded as defining a root at T. The
possible values of EVENTS (k) with their interpretations are as follows:

EVENTS(k) = 0
the kth event function did not have a root;
EVENTS (k) = -1

the kth event function changed sign from positive to negative about a root, in the
direction of integration;

EVENTS (k) =1

the kth event function changed sign from negative to positive about a root, in the
direction of integration;

EVENTS (k) = 2
a root was identified, but no change in sign was observed.

RESIDS(NEQG) - real array. Output
On exit: the value of the kth event function computed at the root, T.

RWORK(LRWORK) - real array. Workspace

This must be the same parameter RWORK as supplied to DO2QFF or DO2QGF. It is used
to pass information from the integration routine to DO2QYF and therefore the contents of
this array must not be changed before calling DO2QYF.

LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO02QYF is called.

This must be the same parameter LRWORK as supplied to DO2QWF.

IWORK (LIWORK) — INTEGER array. Workspace

This must be the same parameter IWORK as supplied to DO2QFF or DO2QGF. It is used to
pass information from the integration routine to DO2QYF and therefore the contents of this
array must not be changed before calling DO2QYF.

LIWORK - INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO2QYF is called.

This must be the same parameter LIWORK as supplied to DO2QWF.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

[NP1692/14)

D02 — Ordinary Differential Equations D02QYF

IFAIL = 1

An integration routine (DO2QFF or D02QGF) has not been called, no root was detected or
one or more of the parameters LRWORK, LIWORK and NEQG does not match the
corresponding values supplied to DO2QWF. Values for the arguments INDEX, TYPE,
EVENTS and RESIDS will not have been set.

This error exit may be caused by overwriting elements of IWORK.

7. Accuracy
Not applicable.

8. Further Comments
None.

9. Example
See example program for DO2QFF.

[NP1692/14] Page 3 (last)

DO2 — Ordinary Differential Equations D02QZF

D02QZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

w

29

b

Purpose

DO02QZF interpolates components of the solution of a non-stiff system of first order differential
equations from information provided by the integrator routines DO2QFF or D02QGF.

Specification
SUBROUTINE D02QZF (NEQF, TWANT, NWANT, YWANT, YPWANT, RWORK, LRWORK,
1 IWORK, LIWORK, IFAIL)
INTEGER NEQF, NWANT, LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real TWANT, YWANT (NWANT), YPWANT (NWANT), RWORK (LRWORK)
Description

DO02QZF evaluates the first NWANT components of the solution of a non-stiff system of first
order ordinary differential equations at any point using the method of Watts and Shampine [1]
and information generated by DO2QFF or D02QGF. D02QZF should not normally be used to
extrapolate outside the current range of the values produced by the integration routine.

References

[1] WATTS, H.A. and SHAMPINE, L.F.
Smoother Interpolants for Adams Codes.
SIAM J. Sci. Stat. Comput., 7, 334-345, 1986.

Parameters
NEQF - INTEGER. Input

On entry: the number of first order ordinary differential equations being solved by the
integration routine. It must contain the same value as the parameter NEQF in a prior call to
the setup routine DO2QWF.

TWANT - real. Input

On entry: the point at which components of the solution and derivative are to be evaluated.
TWANT should not normally be an extrapolation point, that is TWANT should satisfy

TOLD < TWANT < T,
or if integration is proceeding in the negative direction
TOLD =2 TWANT 2 T,

where TOLD is the previous integration point and is, to within rounding,
TCURR — HLAST (see DO2QXF). Extrapolation is permitted but not recommended and
an IFAIL value of 2 is returned whenever extrapolation is attempted.

NWANT - INTEGER. Input

On entry: the number of components of the solution and derivative whose values at TWANT
are required. The first NWANT components are evaluated.

Constraint: 1 < NWANT < NEQF.

YWANT(NWANT) - real array. Output
Onexit: the calculated value of the ith component of the solution at TWANT, for
i =12,..NWANT.

[NP1692114] Page

D02QZF DOQ2 - Ordinary Differential Equations

5:

10:

Page 2

YPWANT (NWANT) — real array. Output

Onexit: the calculated value of the ith component of the derivative at TWANT, for
i =12,..NWANT.

RWORK (LRWORK) — real array. Workspace

This must be the same parameter RWORK as supplied to DO2QWF and to DO2QFF or
DO2QGEF. It is used to pass information from these routines to DO2QZF. Therefore its
contents must not be changed prior to a call to DO2QZF.

LRWORK - INTEGER. Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
DO02QZF is called.

This must be the same parameter LRWORK as supplied to DO2QWF.

IWORK(LIWORK) — INTEGER array. Workspace

This must be the same parameter IWORK as supplied to DO2QWF and to DO2QFF or
DO02QGF. It is used to pass information from these routines to D02QZF. Therefore its
contents must not be changed prior to a call to DO2QZF.

LIWORK - INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D02QZF is called.

This must be the same parameter LIWORK as supplied to DO2QWF.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

An integration routine (D02QFF or D02QGF) has not been called, no integration steps
have been taken since the last call to DO2QWF with STATEF = 'S', one or more of the
parameters LRWORK, LIWORK and NEQF does not match the same parameter supplied to
DO2QWEF, or NWANT does not satisfy 1 < NWANT < NEQF.

IFAIL = 2

DO02QZF has been called for extrapolation. The values of the solution and its derivative at
TWANT have been calculated and placed in YWANT and YPWANT before returning with
this warning (see Section 7).

These error exits may be caused by overwriting elements of RWORK and IWORK.

Accuracy

The error in interpolation is of a similar order to the error arising from the integration. The same
order of accuracy can be expected when extrapolating using DO2QZF. However, the actual error
in extrapolation will, in general, be much larger than for interpolation.

Further Comments

When interpolation for only a few components is required then it is more efficient to order the
components of interest so that they are numbered first.

[NP1692/14)

DO02 - Ordinary Differential Equations D02QZF

9.

9.1.

Example
We solve the equation
Y=y, y(0) =0, ¥y(0) =1

reposed as
Y1 = Y2
Y2 =Y,

over the range [0, 772] with initial conditions y, = 0 and y, = 1 using vector error control
(VECTOL = .TRUE.) and DO2QFF in one-step mode (ONESTP = .TRUE.). DO2QZF is used
to provide solution values at intervals of n/16.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2QZF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQF, NEQG, LATOL, LRTOL, LRWORK, LIWORK
PARAMETER (NEQF=2, NEQG=0, LATOL=NEQF , LRTOL=NEQF,
+ LRWORK=23+23*NEQF+14*NEQG, LIWORK=21+4*NEQG)
real TSTART, HMAX
PARAMETER (TSTART=0.0e0, HMAX=2.0e0) .
* .. Local Scalars ..
real PI, T, TCRIT, TINC, TOUT, TWANT
INTEGER I, IFAIL, J, MAXSTP, NWANT
LOGICAL ALTERG, CRIT, ONESTP, ROOT, SOPHST, VECTOL
CHARACTER*1 STATEF
* .. Local Arrays ..
real ATOL(LATOL), RTOL(LRTOL), RWORK(LRWORK), Y(NEQF),
+ YPWANT (NEQF), YWANT(NEQF)
INTEGER IWORK(LIWORK)
* .. External Functions
real D02QFZ, XO0lAAF
EXTERNAL DO02QFZ, X0lAAF
* .. External Subroutines ..
EXTERNAL DO2QFF, DO2QWF, D02QzF, FTRY03
* .. Intrinsic Functions
INTRINSIC real
* .. Executable Statements

WRITE (NOUT,*) ’'DO2QZF Example Program Results’
PI = X01AAF(0.0e0)

STATEF = 'S’

VECTOL = .TRUE.

DO 20 I = 1, NEQF
ATOL(I) = 1.0e-8
RTOL(I) = 1.0e-4

20 CONTINUE

ONESTP = .TRUE.

CRIT = .TRUE..

TINC = 0.0625e0*PI
TCRIT = 8.0e0*TINC
TOUT = TCRIT

MAXSTP = 500

T = TSTART

TWANT = TSTART + TINC
NWANT = NEQF

Y(1) = 0.0e0

Y(2) = 1.0e0

WRITE (NOUT, *)

WRITE (NOUT,*) ’ T Y (1) Y(2)'
WRITE (NOUT,99999) T, Y(1), Y(2)

IFAIL = -1

[NP1692/14) Page 3

D02QZF D02 - Ordinary Differential Equations

CALL D02QWF(STATEF,NEQF,VECTOL,ATOL,LATOL,RTOL,LRTOL,ONESTP,CRIT,
+ TCRIT, HMAX, MAXSTP, NEQG, ALTERG, SOPHST, RWORK, LRWORK,
+ IWORK, LIWORK, IFAIL)

Jg=1
40 IFAIL = -1

CALL DOZQFF(FTRYO3,NEQF,T,Y,TOUT,DOZQFZ,NEQG,ROOT,RWORK,LRWORK,
+ IWORK, LIWORK, IFAIL)

IF (IFAIL.EQ.0) THEN
60 IF (TWANT.LE.T) THEN
IFAIL = 0

CALL DOZQZF(NEQF,TWANT,NWANT,YWANT,YPWANT,RWORK,LRWORK,
+ IWORK, LIWORK, IFAIL)

WRITE (NOUT,99999) TWANT, YWANT(l), YWANT(2)
J=J + 1
TWANT = TSTART + real(J)*TINC
GO TO 60
END IF
IF (T.LT.TOUT) GO TO 40
END IF
STOP

99999 FORMAT (1X,F6.4,3X,2(F7.4,2X))

END

SUBROUTINE FTRYO3(NEQF,T,Y,YP)
.. Scalar Arguments ..

real T
INTEGER NEQF
Array Arguments ..
real Y(NEQF), YP(NEQF)
.. Executable Statements
YP(1l) = Y(2)
YP(2) = -Y(1)
RETURN
END

9.2. Program Data
None.

9.3. Program Results

D02QZF Example Program Results

HPHREROOOOOO

T Y(1) Y(2)
.0000 0.0000 1.0000
.1963 0.1951 0.9808
.3927 0.3827 0.9239
.5890 0.5556 0.8315
.7854 0.7071 0.7071
.9817 0.8315 0.5556
.1781 0.9239 0.3827
.3744 0.9808 0.1951
.5708 1.0000 0.0000

Page 4 (last) (NP1692/14]

D02 — Ordinary Differential Equations DO02RAF

DO02RAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

DO2RAF solves the two-point boundary-value problem with general boundary conditions for a
system of ordinary differential equations, using a deferred correction technique and Newton
iteration.

Specification
SUBROUTINE DO2RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, IY,
1 ABT, FCN, G, IJAC, JACOBF, JACOBG, DELEPS,
2 JACEPS, JACGEP, WORK, LWORK, IWORK, LIWORK,
3 IFAIL)
INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, IY, IJAC, LWORK,
1 IWORK (LIWORK), LIWORK, IFAIL
real TOL, X(MNP), Y(IY,MNP), ABT(N), DELEPS,
1 WORK (LWORK)
EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP
Description

DO2RAF solves a two-point boundary-value problem for a system of n ordinary differential
equations in the interval (a,b) with b > a. The system is written in the form

Vi = fiy i yaeeya)s 0= 120m (1)
and the derivatives f, are evaluated by a subroutine FCN supplied by the user. With the

1

differential equations (1) must be given a system of n (nonlinear) boundary conditions

g:(y(a)y(b)) =0, i=12,..n
where 4
y(x) = [y, (0,95 (x),y, (O (2)

The functions g, are evaluated by a subroutine G supplied by the user. The solution is computed
using a finite-difference technique with deferred correction allied to a Newton iteration to solve
the finite-difference equations. The technique used is described fully in Pereyra [1].

The user must supply an absolute error tolerance and may also supply an initial mesh for the
finite-difference equations and an initial approximate solution (alternatively a default mesh and
approximation are used). The approximate solution is corrected using Newton iteration and
deferred correction. Then, additional points are added to the mesh and the solution is recomputed
with the aim of making the error everywhere less than the user’s tolerance and of approximately
equidistributing the error on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial
mesh. If, on the other hand, the solution is required at several specific points then the user should
use the interpolation routines provided in the EO1 Chapter if these points do not themselves form
a convenient mesh.

The Newton iteration requires Jacobian matrices

(31‘;)(9g; and(9g;
ay;) ayj(a)) 8y,~(b))'
of;

These may be supplied by the user through subroutines JACOBF for (§> and JACOBG for the

J
others. Alternatively the Jacobians may be calculated by numerical differentiation using the

algorithm described in Curtis et al. [2].

[NP1692/14) Page 1

DO2RAF DO2 - Ordinary Differential Equations

For problems of the type (1) and (2) for which it is difficult to determine an initial
approximation from which the Newton iteration will converge, a continuation facility is
provided. The user must set up a family of problems

y' = f(xy.€), g(y(a),y(b).e) =0 (3)
where f = [f, f,,...f,] etc., and where € is a continuation parameter. The choice € = 0 must
give a problem (3) which is easy to solve and £ = 1 must define the problem whose solution is
actually required. The routine solves a sequence of problems with £ values

0=£1<sz<...<sp=1 4)
The number p and the values &; are chosen by the routine so that each problem can be solved

of

using the solution of its predecessor as a starting approximation. Jacobians 3¢ and g% are

required and they may be supplied by the user via routines JACEPS and JACGEP respectively or
may be computed by numerical differentiation.

4. References

[1] PEREYRA, V.
PASVA3: An Adaptive Finite-Difference Fortran Program for First Order Nonlinear,
Ordinary Boundary Problems.
In: ‘Codes for Boundary Value Problems in Ordinary Differential Equations’,
B. Childs, M. Scott, J.W. Daniel, E. Denman and P. Nelson. (eds.)
Springer-Verlag, Lecture Notes in Computer Science, 76, 1979.

[2] CURTIS, AR., POWELL, M.J.D. and REID, J K.
On the Estimation of Sparse Jacobian Matrices.
J. Inst. Maths. Applics, 13, pp. 117-119, 1974.

5. Parameters

I: N - INTEGER. Input
On entry: the number of differential equations, n.
Constraint: N > 0.

22 MNP - INTEGER. Input

Onentry: MNP must be set to the maximum permitted number of points in the
finite-difference mesh. If LWORK or LIWORK (see below) is too small then internally
MNP will be replaced by the maximum permitted by these values. (A warning message will
be output if on entry IFAIL is set to obtain monitoring information.)

Constraint: MNP 2 32.

3: NP — INTEGER. Input/ Output
On entry: NP must be set to the number of points to be used in the initial mesh.
Constraint: 4 < NP < MNP.

On exit: the number of points in the final mesh.

4 NUMBEG - INTEGER. Input
On entry: the number of left-hand boundary conditions (that is the number involving y(a)
only).

Constraint: 0 < NUMBEG < N.

5: NUMMIX - INTEGER. Input

On entry: the number of coupled boundary conditions (that is the number involving both
y(a) and y(b}).
Constraint: 0 < NUMMIX < N - NUMBEG.

Page 2 [NP1692/14]

DO2 - Ordinary Differential Equations DO2RAF

6: TOL — real. Input

On entry: a positive absolute error tolerance. If
a=x, <X, <..<xyp=b
is the final mesh, z;(x;) is the jth component of the approximate solution at x;, and y;(x)

is the jth component of the true solution of (1) and (2), then, except in extreme
circumstances, it is expected that

|z/.(x,.)—yj(x,-)| < TOL, i=12,.,NP;j=12..n. (5)
Constraint: TOL > 0.0.

7: INIT — INTEGER. Input

On entry: indicates whether the user wishes to supply an initial mesh and approximate
solution (INIT # 0) or whether default values are to be used, (INIT = 0).

8: X(MNP) - real array. Input/ Output

On entry: the user must set X(1) = g and X(NP) = b. If INIT = 0 on entry a default
equispaced mesh will be used, otherwise the user must specify a mesh by setting X (i) = x,,
for i = 2,3,..NP-1.
Constraints: X(1) < X(NP), if INIT = 0,

X(1) < X(2) < ... < X(NP), if INIT = 0.
Onexit: X(1),X(2),....X(NP) define the final mesh (with the returned value of NP) and
X(1) = a and X(NP) = b.

9: Y(IY,MNP) - real array. Input/ Output

Onentry: if INIT = 0, then Y need not be set.

If INIT # 0, then the array Y must contain an initial approximation to the solution such that
Y (j,i) contains an approximation to

yj(x,.), i=12.,NP;j=12..,n.
On exit: the approximate solution z;(x;) satisfying (5) on the final mesh, that is
Y (i) = z;(x;), i=12..,NP;j=12,.,n,

where NP is the number of points in the final mesh. If an error has occurred then Y contains
the latest approximation to the solution. The remaining columns of Y are not used.

10: IY — INTEGER. Input

On entry: the first dimension of the array Y as declared in the (sub)program from which
DO2RAF is called.

Constraint: IY 2 N.

11: ABT(N) - real array. Output

Onexit: ABT (i), for i = 1,2,...,n, holds the largest estimated error (in magnitude) of the
ith component of the solution over all mesh points.

122 FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions f; (i.e. the derivatives y;) at a general point x for a given
value of ¢, the continuation parameter (see Section 3).

Its specification is:

SUBROUTINE FCN(X, EPS, Y, F, N)
INTEGER N
real X, EPS, Y(N), F(N)

[NP2136/15]

Page 3

DO2RAF

13: G-

DO2 — Ordinary Differential Equations

1. X -—real Input
On entry: the value of the argument x.
2: EPS —real. Input

On entry: the value of the continuation parameter, €. This is 1 if continuation is
not being used.

33 Y(N) - real array. Input
On entry: the value of the argument y,, for i = 1,2,...,n.

4: F(N) — real amray. Output
On exit: the values of f;, fori = 1,2,...,n.
5: N — INTEGER. Input

On entry: the number of equations.

FCN must be declared as EXTERNAL in the (sub)program from which DO2RAF is called.
Parameters denoted as Input must not be changed by this procedure.

SUBROUTINE, supplied by the user. External Procedure
G must evaluate the boundary conditions in equation (3) and place them in the array BC.
Its specification is:

SUBROUTINE G(EPS, YA, YB, BC, N)

INTEGER N
real EPS, YA(N), YB(N), BC(N)
1: EPS - real. Input

On entry: the value of the continuation parameter, €. This is 1 if continuation is
not being used.

2: YA(N) — real array. Input
On entry: the value y,(a), fori = 1,2,...,n.

3: YB(N) — real array. Input
On entry: the value y;(b), fori = 1,2,...,n.

4. BC(N) - real array. Output
On exit: the values g;(y(a),y(b),€), for i = 1,2,...,n. These must be ordered as
follows:

(i) first, the conditions involving only y(a) (see NUMBEG description
above);

(ii) next, the NUMMIX coupled conditions involving both y(a) and y(b)
(see NUMMIX description above); and,

(iii) finally, the conditions involving only y(b) (N-NUMBEG-NUMMIX).
5: N — INTEGER. Input
On entry: the number of equations, 7.

G must be declared as EXTERNAL in the (sub)program from which DO2RAF is called.
Parameters denoted as /nput must not be changed by this procedure.

14: IJAC — INTEGER. Input

Page 4

On entry: indicates whether or not the user is supplying Jacobian evaluation routines. If
IJAC # O then the user must supply routines JACOBF and JACOBG and also, when
continuation is used, routines JACEPS and JACGEP. If JAC = 0 numerical differentiation
is used to calculate the Jacobian and the routines D02GAZ, D02GAY, D02GAZ and
D02GAX respectively may be used as the dummy parameters.

[NP2136/15)

DO2 - Ordinary Differential Equations DO2RAF

15: JACOBF - SUBROUTINE, supplied by the user. External Procedure

of

JACOBF must evaluate the Jacobian (%}c—') for i,j = 1,2,..,n, given x and Vs for
j

j=12,..n.

Its specification is:

SUBROUTINE JACOBF (X, EPS, Y, F, N)
INTEGER N

real X, EPS, Y(N), F(N,N)

11 X —real Input
On entry: the value of the argument x.

2: EPS - real. Input
On entry: the value of the continuation parameter €. This is 1 if continuation is not
being used.

3 Y(N) — real array. Input
On entry: the value of the argument y;, fori = 1,2,...,n.

4 F(N,N) — real array. Output
On exit: F(i,j) must be set to the value of % evaluated at the point (x,y), for
ij = 1,2,..,n. '

5: N — INTEGER. Input

On entry: the number of equations, n.

JACOBF must be declared as EXTERNAL in the (sub)program from which DO2RAF is
called. Parameters denoted as /nput must not be changed by this procedure.

16: JACOBG — SUBROUTINE, supplied by the user. External Procedure
dg; g,
JACOBG must evaluate the Jacobians | - o') and (-g') The ordering of the rows
dy i(a) dy ;(b)

[NP1692/14]

of AJ and BJ must correspond to the ordering of the boundary conditions described in the
specification of subroutine G above.

Its specification is:

SUBROUTINE JACOBG(EPS, YA, YB, AJ, BJ, N)

INTEGER N
real EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)
1: EPS - real. Input

On entry: the value of the continuation parameter, €. This is 1 if continuation is
not being used.

2: YA(N) — real array. Inpur
On entry: the value y,(a), for i = 1,2,...,n.
3: YB(N) — real array. Input
On entry: the value y,(b), fori = 1,2,...,n.
4: AJ(N,N) — real array. QOutput
On exit: AJ(i,j) must be set to the value - 8i. ,forij=12,.,n.
a}’j(a)

Page 5

DO02RAF

D02 — Ordinary Differential Equations

5: BJ(N,N) — real array. Output
0g;
On exit: BJ(i,j) must be set to the value ——g'—, fori,j = 1,2..,n.
dy;(b)
6: N — INTEGER. Input
On entry: the number of equations, n.

JACOBG must be declared as EXTERNAL in the (sub)program from which DO2RAF is
called. Parameters denoted as Input must not be changed by this procedure.

17: DELEPS - real. Input/ Output

18: JAC

Page 6

On entry: DELEPS must be given a value which specifies whether continuation is required.
If DELEPS < 0.0 or DELEPS 2 1.0 then it is assumed that continuation is not required. If
0.0 < DELEPS < 1.0 then it is assumed that continuation is required unless
DELEPS < +machine precision when an error exit is taken. DELEPS is used as the
increment £, — €, (see (4)) and the choice DELEPS = (.1 is recommended.

Onexit: an overestimate of the increment €, — €, , (in fact the value of the increment
which would have been tried if the restriction € = 1 had not been imposed). If
continuation was not requested then DELEPS = 0.0.

If continuation is not requested then the parameters JACEPS and JACGEP may be replaced
by dummy actual parameters in the call to DO2RAF. (D02GAZ and DO2GAX respectively
may be used as the dummy parameters.)

EPS — SUBROUTINE, supplied by the user. External Procedure
af.
JACEPS must evaluate the derivative i‘; given x and y if continuation is being used.

d

Its specification is:

SUBROUTINE JACEPS(X, EPS, Y, F, N)

INTEGER N
real X, EPS, Y(N), F(N)
11 X —real Input
On entry: the value of the argument x.
2: EPS - real. Input
On entry: the value of the continuation parameter, €.
3: Y(N) — real array. Input
On entry: the solution values y, at the point x, for i = 1,2,...,n.
4: F(N) - real array. Output

of.
; On exit: F(i) must contain the value —]i at the point (x,y), fori = 1,2,...,n.

o€
5: N — INTEGER. Input
‘ On entry: the number of equations, n.

JACEPS must be declared as EXTERNAL in the (sub)program from which DO2RAF is
called. Parameters denoted as Inpur must not be changed by this procedure.

[NP1692/14)

DO2 — Ordinary Differential Equations DO2RAF

19:

20:
21:

22:
23:

24:

JACGEP — SUBROUTINE, supplied by the user. External Procedure

0g;
JACGEP must evaluate the derivatives 8 if continuation is being used.

o€

Its specification is:

SUBROUTINE JACGEP(EPS, YA, YB, BCEP, N)

INTEGER N
real EPS, YA(N), YB(N), BCEP(N)
1: EPS - real. Input
On entry: the value of the continuation parameter, €.
22 YA(N) - real amray. Input
On entry: the value of y,(a), fori = 1,2,...,n.
3: YB(N) — real array. Input
On entry: the value of y,(b), for i = 1,2,...,n.
4. BCEP(N) — real array. Output
On exit: BCEP (i) must contain the value of %, fori = 1,2, .,n.
5: N - INTEGER. Input

On entry: the number of equations, n.

JACGEP must be declared as EXTERNAL in the (sub)program from which DO2RAF is
called. Parameters denoted as /nput must not be changed by this procedure.

WORK (LWORK) — real array. Workspace
LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
DO2RAF is called.

Constraint: LWORK > MNPx(3N2+6N+2) + 4N? + 3N.

IWORK (LIWORK) — INTEGER array. Workspace
LIWORK - INTEGER. Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
DO2RAF is called.

Constraints: LIWORK 2 MNPx(2xN+1) + N, if JAC # 0,
LIWORK > MNPx(2xN+1) + N? + 4xN + 2, if IAC = 0.

IFAIL - INTEGER. Input/ Output

For this routine, the normal use of IFAIL is extended to control the printing of error and
warning messages as well as specifying hard or soft failure (see Chapter PO1 for details).

Before entry, IFAIL must be set to a value with the decimal expansion cha, where each of
the decimal digits ¢, b and a must have the value O or 1.

a = 0 specifies hard failure, otherwise soft failure;
b
c

0 suppresses error messages, otherwise error messages will be printed (see Section 6);

0 suppresses warning messages, otherwise warning messages will be printed (see
Section 6).

The recommended value for inexperienced users is 110 (i.e. hard failure with all messages
printed).

Unless the routine detects an error (see Section 6), IFAIL contains O on exit.

[NP1692/14] Page 7

DO2RAF D02 - Ordinary Differential Equations

6. Error Indicators and Warnings
Errors detected by the routine:

For each error, an explanatory error message is output on the current error message unit (as
defined by X04AAF), unless suppressed by the value of IFAIL on entry.

IFAIL = 1
One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS,

LWORK or LIWORK has been incorrectly set, or X(1) 2 X(NP) or the mesh points X (i)
are not in strictly ascending order.

IFAIL = 2

A finer mesh is required for the accuracy requested; that is MNP is not large enough. This
error exit normally occurs when the problem being solved is difficult (for example, there is
a boundary layer) and high accuracy is requested. A poor initial choice of mesh points will
make this error exit more likely.

IFAIL = 3
The Newton iteration has failed to converge. There are several possible causes for this error:
(i) faulty coding in one of the Jacobian calculation routines;

(ii) if IJAC = O then inaccurate Jacobians may have been calculated numerically (this
is a very unlikely cause); or,

(iii) a poor initial mesh or initial approximate solution has been selected either by the
user or by default or there are not enough points in the initial mesh. Possibly, the
user should try the continuation facility.

IFAIL = 4

The Newton iteration has reached roundoff error level. It could be however that the answer
returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL = 5

The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical
differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when
INIT = 0).

IFAIL = 6

There is no dependence on € when continuation is being used. This can be due to faulty
coding of JACEPS or JACGEP or, in some circumstances, to a zero initial choice of
approximate solution (such as is chosen when INIT = 0).

IFAIL = 7

DELEPS is required to be less than machine precision for continuation to proceed. It is
likely that either the problem (3) has no solution for some value near the current value of
€ (see the advisory print out from DO2RAF) or that the problem is so difficult that even
with continuation it is unlikely to be solved using this routine. If the latter cause is suspected
then using more mesh points initially may help.

IFAIL = 8
IFAIL = 9

Indicates that a serious error has occurred in a call to DO2RAF or DO2RAR respectively.
Check all array subscripts and subroutine parameter lists in calls to DO2RAF. Seek expert
help.

nn

Page 8 [NP1692/14]

DO2 - Ordinary Differential Equations DO02RAF

7. Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the
relation (5) except in extreme circumstances. The final error estimate over the whole mesh for
each component is given in the array ABT. If too many points are specified in the initial mesh,
the solution may be more accurate than requested and the error may not be approximately
equidistributed.

8. Further Comments

There are too many factors present to quantify the timing. The time taken by the routine is
negligible only on very simple problems.

The user is strongly recommended to set IFAIL to obtain self-explanatory error messages, and
also monitoring information about the course of the computation.

In the case where the user wishes to solve a sequence of similar problems, the use of the final
mesh and solution from one case as the initial mesh is strongly recommended for the next.

9. Example
We solve the differential equation
yrn = _}’yu _ 26(1-)"2)
with € = 1 and boundary conditions
y(0) =y'(0) =0, y(10) =1
to an accuracy specified by TOL = 1.0E-4. The continuation facility is used with the
continuation parameter ¢ introduced as in the differential equation above and with

DELEPS = 0.1 initially. (The continuation facility is not needed for this problem and is used
here for illustration.)

9.1. Program Text

Note: the listing of the example program presented below uscs bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2RAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N, MNP, IY, LWORK, LIWORK
PARAMETER (N=3,MNP=40, IY=N, LWORK=MNP * (3*N*N+6*N+2)
+ +4*N*N+3*N, LINORK=MNP* (2*N+1)+N)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real DELEPS, TOL
INTEGER I, IFAIL, IJAC, INIT, J, NP, NUMBEG, NUMMIX
* .. Local Arrays ..
real ABT(N), WORK(LWORK), X(MNP), Y(IY,MNP)
INTEGER IWORK (LIWORK)
* .. External Subroutines ..
EXTERNAL DO2RAF, FCN, G, JACEPS, JACGEP, JACOBF, JACOBG,
+ X04ABF
* .. Executable Statements

WRITE (NOUT,*) ‘DO2RAF Example Program Results’
WRITE (NOUT, *)

WRITE (NOUT,*) ’Calculation using analytic Jacobians’
CALL X04ABF(1,NOUT)

TOL = 1.0e-4

NP = 17

NUMBEG = 2

NUMMIX = 0

X(1) = 0.0e0

X(NP) = 10.0e0

INIT = 0

[NP1692/14] Page 9

DO2RAF D02 — Ordinary Differential Equations

DELEPS = 0.1le0
IJAC = 1

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

CALL DOZRAF(N,MNP,NP,NUMBEG,NUMMIX,TOL,INIT,X,Y,N,ABT,FCN,G,IJAC,
+ JACOBF, JACOBG, DELEPS, JACEPS, JACGEP, WORK, LWORK, IWORK,
+ LIWORK, IFAIL)

IF (IFAIL.EQ.O0 .OR. IFAIL.EQ.4) THEN
IF (IFAIL.EQ.4) WRITE (NOUT, 99996)
+ 'On exit from DO2RAF IFAIL = ‘, IFAIL
WRITE (NOUT, *)
WRITE (NOUT,99999) ‘Solution on final mesh of ’, NP, ’ points’
WRITE (NOUT, *)
r

+ X(I) Y1(I) Y2(I) Y3(I1I)’
WRITE (NOUT, 99998) (X(J),(Y(I,J),I=1,N),J=1,NP)
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Maximum estimated error by components’
WRITE (NOUT,99997) (ABT(I),I=1,N)

ELSE
WRITE (NOUT, 99996) 'On exit from DO2RAF IFAIL = ’, IFAIL

END IF

20 STOP

99999 FORMAT (1X,A,I2,A)
99998 FORMAT (1X,F10.3,3F13.4)
99997 FORMAT (11X,1P,3el3.2)
99996 FORMAT (1X,A,I3)

END

SUBROUTINE FCN(X,EPS,Y,F,M)
* .. Scalar Arguments
real EPS, X
INTEGER M
* .. Array Arguments ..
real F(M), Y(M)
* .. Executable Statements ..
F(1) Y(2)
F(2) Y(3)
F(3) —“Y(1)*Y(3) — 2.0e0*(1.0e0-Y(2)*Y(2))*EPS
RETURN
END

[|

SUBROUTINE G(EPS,Y,Z,AL,M)
* .. Scalar Arguments

real EPS

INTEGER M
* .. Array Arguments ..

real AL(M), Y(M), 2(M)
* .. Executable Statements ..

AL(1l) Y(1)

AL(2) Y(2)

AL(3) Z(2) - 1.0e0

RETURN

END

SUBROUTINE JACEPS(X,EPS,Y,F,M)
* .. Scalar Arguments
real EPS, X
INTEGER M
* .. Array Arguments ..
real F(M), Y(M)
* .. Executable Statements
F(1) 0.0e0
F(2) 0.0e0
F(3) —-2.0e0*(1.0e0-Y(2)*Y(2))
RETURN
END

Page 10 [NP1692/14]

D02 — Ordinary Differential Equations DO2RAF

SUBROUTINE JACGEP(EPS,Y,Z,AL,M)

* .. Scalar Arguments ..

real EPS

INTEGER M
* .. Array Arguments

real AL(M), Y(M), Z(M)
* .. Local Scalars ..

INTEGER I
* .. Executable Statements ..

DO 201 =1, M

AL(I) = 0.0e0
20 CONTINUE

RETURN

END
*

SUBROUTINE JACOBF(X,EPS,Y,F,M)
* .. Scalar Arguments ..

real EPS, X

INTEGER M
* .. Array Arguments

real F(M,M), Y(M)
* .. Local Scalars ..

INTEGER I, J
* .. Executable Statements

DO 40 I =1, M
DO 20 J =1, M

F(I,J) = 0.0e0
20 CONTINUE
40 CONTINUE

F(1,2) = 1.0e0

F(2,3) = 1.0e0

F(3,1) = -Y(3)

F(3,2) = 4.0e0*Y(2)*EPS

F(3,3) = -Y(1)

RETURN

END
*

SUBROUTINE JACOBG(EPS,Y,Z,A,B,M)
* .. Scalar Arguments

real EPS

INTEGER M
* .. Array Arguments ..

real A(M,M), B(M,M), Y(M), 2Z(M)
* .. Local Scalars

INTEGER I, J
* .. Executable Statements

DO 40 I =1, M
DO 20 J =1, M
A(I,J) = 0.0e0
B(I,J) = 0.0e0
20 CONTINUE
40 CONTINUE
A(1,1)
A(2,2)
B(3,2)
RETURN
END

1.0e0
1.0e0
1.0e0

9.2. Program Data
None.

[NP1692/14] Page 11

DO2RAF D02 - Ordinary Differential Equations

9.3. Program Results
DO2RAF Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points

X(I) Y1(I) Y2(1) Y3(I)
0.000 0.0000 0.0000 1.6872
0.063 0.0032 0.1016 1.5626
0.125 0.0125 0.1954 1.4398
0.188 0.0275 0.2816 1.3203
0.250 0.0476 0.3605 1.2054
0.375 0.1015 0.4976 0.9924
0.500 0.1709 0.6097 0.8048
0.625 0.2530 0.6999 0.6438
0.703 0.3095 0.7467 0.5563
0.781 0.3695 0.7871 0.4784
0.938 0.4978 0.8513 0.3490
1.094 0.6346 0.8977 0.2502
1.250 0.7776 0.9308 0.1763
1.458 0.9748 0.9598 0.1077
1.667 1.1768 0.9773 0.0639
1.875 1.3815 0.9876 0.0367
2.031 1.5362 0.9922 0.0238
2.188 1.6915 0.9952 0.0151
2.500 2.0031 0.9983 0.0058
2.656 2.1591 0.9990 0.0035
2.813 2.3153 0.9994 0.0021
3.125 2.6277 0.9998 0.0007
3.750 3.2526 1.0000 0.0001
4.375 3.8776 1.0000 0.0000
5.000 4.5026 1.0000 0.0000
5.625 5.1276 1.0000 0.0000
6.250 5.7526 1.0000 0.0000
6.875 6.3776 1.0000 0.0000
7.500 7.0026 1.0000 0.0000
8.125 7.6276 1.0000 0.0000
8.750 8.2526 1.0000 0.0000
9.375 8.8776 1.0000 0.0000

10.000 9.5026 1.0000 0.0000
Maximum estimated error by components
6.92E-05 1.81E-05 6.42E-05

With IFAIL set to 111 in the example program, monitoring information similar to that below is
printed:

DO2RAF MONITORING INFORMATION

MONITORING NEWTON ITERATION

NUMBER OF POINTS IN CURRENT MESH = 17

CORRECTION NUMBER 0 RESIDUAL SHOULD BE .LE. 1.00E+00
ITERATION NUMBER 0 RESIDUAL = 1.00E+00
SQUARED NORM OF CORRECTION = 9.90E+01
SQUARED NORM OF GRADIENT = 1.00E+00
SCALAR PRODUCT OF CORRECTION AND GRADIENT = 1.00E+00
ITERATION NUMBER 1 RESIDUAL = 5.59E-01

intermediate results omitted

Page 12 [NP1692/14]

DO2 — Ordinary Differential Equations DO2RAF

MESH SELECTION
NUMBER OF NEW POINTS 5

MONITORING NEWTON ITERATION
NUMBER OF POINTS IN CURRENT MESH = 33

CORRECTION NUMBER 1 RESIDUAL SHOULD BE .LE. 1.22E-05
ITERATION NUMBER 0 RESIDUAL = 3.58E-04
SQUARED NORM OF CORRECTION = 1.70E-06
SQUARED NORM OF GRADIENT = 2.89E-07
SCALAR PRODUCT OF CORRECTION AND GRADIENT = 1.28E-07
ITERATION NUMBER 1 RESIDUAL = 2.70E-08

MESH SELECTION
NUMBER OF NEW POINTS 0

CORRECTION NUMBER 1 ESTIMATED MAXIMUM ERROR = 6.92E-05
ESTIMATED ERROR BY COMPONENTS
6.92E-05 1.81E-05 6.42E-05

[NP1692/14] Page 13 (last)

D02 — Ordinary Differential Equations DO02SAF

DO02SAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

(75

Purpose

DO2SAF solves a two-point boundary-value problem for a system of first order ordinary
differential equations with boundary conditions, combined with additional algebraic equations. It
uses initial value techniques and a modified Newton iteration in a shooting and matching method.

Specification
SUBROUTINE DO2SAF (P, M, N, N1, PE, PF, E, DP, NPOINT, WP, IWP,
1 ICOUNT, RANGE, BC, FCN, EQN, CONSTR, YMAX, MONIT,
2 PRSOL, W, IWl, IW2, IFAIL)
INTEGER M, N, N1, NPOINT, IWP, ICOUNT, IWl, IW2, IFAIL
real P(M), PE(M), PF(M), E(N), DP(M), WP(IWP,6), YMAX,
1 W(IW1l,IW2)
LOGICAL CONSTR
EXTERNAL RANGE, BC, FCN, EQN, CONSTR, MONIT, PRSOL
Description

DO2SAF solves a two-point boundary-value problem for a system of n first-order ordinary
differential equations with separated boundary conditions by determining certain unknown
parameters p,,p,,...,p,,. (There may also be additional algebraic equations to be solved in the
determination of the parameters and, if so, these equations are defined by the routine EQN.) The
parameters may be, but need not be, boundary values; they may include eigenvalues, parameters
in the coefficients of the differential equations, coefficients in series expansions or asymptotic
expansions for boundary values, the length of the range of definition of the system of differential
equations etc.

It is assumed that we have a system of n differential equations of the form

y' = f(xy.p) (1)
where p = (p,,p,,.--.P,,)" is the vector of parameters, and that the derivative f is evaluated by a
routine FCN. Also, n, of the equations are assumed to depend on p. For n, < nthe n — n,
equations of the system are not involved in the matching process. These are the driving
equations; they should be independent of p and of the solution of the other n, equations. In
numbering the equations in FCN and BC the driving equations must be put first (as they
naturally occur in most applications). The range of definition [a,b] of the differential equations
is defined by the routine RANGE and may depend on the parameters p, p,,...,p,, (thatis, on p).
RANGE must define the points x,,x,,...,.Xxpony» NPOINT 2 2, which must satisfy

a=x <x, <..<Xyponr = b 2)
(or a similar relationship with all the inequalities reversed).

If NPOINT > 2 the points x,,X,,...,.Xxpowy Can be used to break up the range of definition.
Integration is restarted at each of these points. This means that the differential equations (1) can
be defined differently in each subinterval [x,,x,,,], fori = 1,2,.. . NPOINT-1. Also, since initial
and maximum integration step-sizes can be supplied on each subinterval (via the array WP), the
user can indicate parts of the range [a,b] where the solution y(x) may be difficult to obtain
accurately and can take appropriate action.

The boundary conditions may also depend on the parameters and are applied at ¢ = x, and
b = xypomr- They are defined (in the routine BC) in the form

y(@) = g,(p), y(b) = g,(p). (3)

[NP1692/14] Page 1

DO02SAF DO2 - Ordinary Differential Equations

Page 2

The boundary-value problem is solved by determining the unknown parameters p by a shooting
and matching technique. The differential equations are always integrated from a to b with initial
values y(a) = g, (p). The solution vector thus obtained at x = b is subtracted from the vector
g, (p) to give the n, residuals r, (p), ignoring the first n — n,, driving equations. Because the
direction of integration is always from a to b, it is unnecessary, in BC, to supply values for the
first n — n, boundary values at b, that is the first n — n, components of g, in (3). Forn, < m
then r, (p). Together with the m — n, equations defined by routine EQN,

r2(p) =0, (4)
these give a vector of residuals r, which at the solution, p, must satisfy
ri(p)
= = Q. 5
r(p) (,2 (p)> (5)

These equations are solaved by a pseudo-Newton iteration which uses a modified singular value
decomposition of J = p when solving the linear equations which arise. The Jacobian J used in

Newton’s method is obtained by numerical differentiation. The parameters at each Newton
iteration are accepted only if the norm ||[D~'J +r||2 is much reduced from its previous value. Here

J" is the pseudo-inverse, calculated from the singular value decomposition, of a modified version

of the Jacobian J (f s actually the inverse of the Jacobian in well-conditioned cases). D is a
diagonal matrix with

d,; = max(|p;|, PF(i)), (6)

4

where PF is an array of floor values.

See Deuflhard [3] for further details of the variants of Newton’s method used, Gay [2] for the
modification of the singular value decomposition and Gladwell [4] for an overview of the method
used.

Two facilities are provided to prevent the pseudo-Newton iteration running into difficulty. First,
the user is permitted to specify constraints on the values of the parameters p via a logical function
CONSTR. These constraints are only used to prevent the Newton iteration using values for p
which would violate them; that is, they are not used to determine the values of p. Secondly, the
user is permitted to specify a maximum value y . for [ly(x)|l., at all points in the range [a,b]. It
is intended that this facility be used to prevent machine ‘overflow’ in the integrations of equation
(1) due to poor choices of the parameters p which might arise during the Newton iteration.
When using this facility, it is presumed that the user has an estimate of the likely size of ||y(x)|l..
at all points x € [a,b]. y,.., should then be chosen rather larger (say by a factor of 10) than this
estimate.

The user is strongly advised to supply a routine MONIT (or to call the ‘default’ routine
D02HBX, see below) to monitor the progress of the pseudo-Newton iteration. The user can
output the solution of the problem y(x) by supplying a suitable routine PRSOL (an example is
given in Section 9 of a routine designed to output the solution at equally spaced points).

DO2SAF is designed to try all possible options before admitting failure and returning to the user.
Provided the routine can start the Newton iteration from the initial point p it will exhaust all the
options available to it (though the user can override this by specifying a maximum number of
iterations to be taken). The fact that all its options have been exhausted is the only error exit
from the iteration. Other error exits are possible, however, whilst setting up the Newton iteration
and when computing the final solution.

The user who requires more background information about the solution of boundary value
problems by shooting methods is recommended to read the appropriate chapters of Hall and Watt
[1], and for a detailed description of DO2SAF Gladwell [4] is recommended.

References

[1] HALL, G. and WATT, J.M.
Modern Numerical Methods in Ordinary Differential Equations.
Clarendon Press, Oxford, 1976.

[NP1692/14]

D02 — Ordinary Differential Equations DO02SAF

[2] GAY, D.
On Modifying Singular Values to Solve Possibly Singular Systems of Nonlinear Equations.
Working Paper 125, Computer Research Centre, National Bureau for Economics and
Management Science, Cambridge, Mass, 1976.

[3] DEUFLHARD, P.
A Modified Newton Method for the Solution of Ill-conditioned Systems of Nonlinear
Equations with Application to Multiple Shooting.
Num. Math. 22, pp. 289-315, 1974.

[4] GLADWELL, 1.
The Development of the Boundary Value Codes in the Ordinary Differential Equation
Chapter of the NAG Fortran Library.
In: ‘Codes for Boundary Value Problems in Ordinary Differential Equations’,
B. Child, M. Scott, J.W. Daniel, E. Denman and P. Nelson (eds).
Springer-Verlag Lecture Notes in Computer Science. 76, 1979.

S. Parameters
1: P(M) - real array. Input/ Output
On entry: P(i) must be set to an estimate of the ith parameter, p;, for i = 1,2,...,m.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it
contains the last calculated value of the parameter.

2: M - INTEGER. Input
On entry: the number of parameters, m.
Constraint: M > 0.

3: N - INTEGER. Input
On entry: the total number of differential equations, n.
Constraint: N > 0.

4: NI - INTEGER. Input

On entry: the number of differential equations active in the matching process, n,. The active
equations must be placed last in the numbering in the routines FCN and BC (see below).
The first N — N1 equations are used as the driving equations.

Constraint: N1 € N, N1 < M and N1 > 0.

5: PE(M) - real array. Input
Onentry: PE(i), fori = 1,2,...,m, must be set to a positive value for use in the convergence
test in the ith parameter p,. See the specification of PF below for further details.

Constraint: PE(i) > 0, fori = 1,2,....m.

6: PF(M) — real array. Input/ Output
On entry: PF(i), fori = 1,2,...,m, should be set to a ‘floor’ value in the convergence test on
the ith parameter p,. If PF(i) < 0.0 on entry then it is set to the small positive value /e
(where € may in most cases be considered to be machine precision); otherwise it is used
unchanged.
The Newton iteration is presumed to have converged if a full Newton step is taken
(ISTATE = 1 in the specification of MONIT below), the singular values of the Jacobian
are not being significantly perturbed (also see MONIT) and if the Newton correction C,;
satisfies

IC;| € PE(i)xmax(|p,|,PF(i)), i= 12,.,m,

[NP1692114] Page 3

DO02SAF D02 — Ordinary Differential Equations

where p, is the current value of the ith parameter. The values PF(i) are also used in
determining the Newton iterates as discussed in Section 3, see equation (6).

On exit: the values actually used.

7 E(N) - real array. Input

On entry: values for use in controlling the local error in the integration of the differential
equations. If err; is an estimate of the local error in y,, for i = 1,2,...,n then

lerr;| < E(i)xmax{vey;|}
where £ may in most cases be considered to be machine precision.
Suggested value: E(i) = 107>,
Constraint: E(i) > 0.0, fori = 1,2,..,N.

8: DP(M) — real array. Input/ Output

On entry: a value to be used in perturbing the parameter p; in the numerical differentiation
to estimate the Jacobian used in Newton’s method. If DP(i) = 0.0 on entry, an estimate is
made internally by setting

DP(i) = vexmax(PF(i),|p;|) (7N

where p, is the initial value of the parameter supplied by the user and € may in most cases
be considered to be machine precision. The estimate of the Jacobian, J, is made using
forward differences, that is for each i, for i = 1,2,...,m, p, is perturbed to p, + DP(i) and
the ith column of J is estimated as

(r(p;+DP(i))-r(p;))/DP(i)

where the other components of p are unchanged (see equation (3) for the notation used). If
this fails to produce a Jacobian with significant columns, backward differences are tried by
perturbing p, to p, — DP(i) and if this also fails then central differences are used with p;
perturbed to p;, + 10.0xDP(i). If this also fails then the calculation of the Jacobian is
abandoned. If the Jacobian has not previously been calculated then an error exit is taken. If
an earlier estimate of the Jacobian is available then the current parameter set, p;, for
i = 1,2,..,M, is abandoned in favour of the last parameter set from which useful progress
was made and the singular values of the Jacobian used at the point are modified before
proceeding with the Newton iteration. The user is recommended to use the default value
DP(i) = 0.0 unless he has prior knowledge of a better choice. If any of the perturbations
described above are likely to lead to an unfortunate set of parameter values then the user
should use the LOGICAL FUNCTION CONSTR (see below) to prevent such perturbations
(all changes of parameters are checked by a call to CONSTR).

On exit: the values actually used.

9: NPOINT - INTEGER. Input

Onentry: 2 plus the number of breakpoints in the range of definition of the system of
differential equations (1),

Constraint: NPOINT 2 2.

10: WP(IWP,6) — real array. Input/ Output

On entry: WP (i,1) must contain an estimate for an initial stepsize for integration across the
ith subinterval [X (i), X(i+1)], i = 1,2,...,NPOINT-1 (see RANGE below). WP(i,1)
should have the same sign as X(i+1) — X(i) if it is non-zero. If WP(i,1) = 0.0, on entry,
a default value for the initial stepsize is calculated internally. This is the recommended
mode of entry.

WP(i,2) must contain an upper bound on the modulus of the stepsize to be used in the
integration on [X(i), X(i+1)], i = 1,2,.. ,NPOINT-1. If WP(i,2) = 0.0 on entry no
bound is assumed. This is the recommended mode of entry unless the solution is expected
to have important features which might be ‘missed’ in the integration if the stepsize were
permitted to be chosen freely.

Page 4 [NP1692/14]

D02 - Ordinary Differential Equations DO02SAF

WP (7,3) must contain a lower bound for the modulus of the step size on the ith sub-interval
[X(7),X(+1)], fori = 1,2..,NPOINT-1. If WP(i,3) = 0.0 on entry, a very small default
value is used. By setting WP(7,3) > 0.0 but smaller than the expected step sizes (assuming
the user has some insight into the likely step sizes) expensive integrations with parameters
p far from the solution can be avoided.

Onexit: WP(i,1) contains the initial step size used on the last integration on [X(/),
X(i+1)], for i = 1,2...,NPOINT-1, (excluding integrations during the calculation of the
Jacobian).

WP(i,2), for i = 1,2..,NPOINT-1, is usually unchanged. If the maximum step size
WP(7,2) is so small or the length of the range [X(i), X(i+1)] is so short that on the last
integration the step size was not controlled in the main by the size of the error tolerances
E(/) but by these other factors, then WP(NPOINT,2) is set to the floating-point value of 7
if the problem last occurred in [X(i),X(i+1)]. Any results obtained when this value is
returned as non-zero should be viewed with caution.

WP(;,3), fori = 1,2..., NPOINT-1 are unchanged.

If an error exit with IFAIL = 4, 5, or 6 (see Section 6) occurs on the integration made
from X (i) to X(i+1) the floating-point value of 7 is returned in WP(NPOINT,1). The
actual point x € [X(7),X(i+1)] where the error occurred is returned in WP(1,5) (see also
the specification of W). The floating-point value of NPOINT is returned in
WP (NPOINT,1) if the error exit is caused by a call to BC.

If an error exit occurs when estimating the Jacobian matrix (IFAIL = 7, 8, 9, 10, 11, 12, -
see Section 6) and if parameter p; was the cause of the failure then on exit WP(NPOINT,1)
contains the floating-point value of /.

WP (i,4) contains the point X(7), for i/ = 1,2,...,NPOINT, used at the solution p or at the
final values of p if an error occurred.

WP is also partly used as workspace.

11: IWP - INTEGER. Input

On entry: the first dimension of the array WP as declared in the (sub)program from which
DO2SAF is called.

Constraint: IWP 2 NPOINT.

12 ICOUNT - INTEGER. Input

On entry: an upper bound on the number of Newton iterations. If ICOUNT = 0 on entry, no
check on the number of iterations is made (this is the recommended mode of entry).

Constraint: ICOUNT 2 0.

13: RANGE - SUBROUTINE, supplied by the user. External Procedure

RANGE must specify the break-points x,, for i = 1,2,...,NPOINT, which may depend on
the parameters p , forj = 1.2,...,.M.

Its specification is:

SUBROUTINE RANGE(X, NPOINT, P, M)

INTEGER NPOINT, M
real X(NPOINT), P(M)
1: X(NPOINT) - real array. Output

On exit: the ith break-point, for i = 1,2,...,NPOINT. The sequence (X(i)) must
be strictly monotonic, that is either
a = X(1) < X(2) < .. < X(NPOINT)

=b
ora = X(1) > X(2) >... > X(NPOINT) = »

[NP2834117) Page 5

D02SAF

14: BC

D02 - Ordinary Differential Equations

2: NPOINT - INTEGER. Input
On entry: two plus the number of break-points in (a,b).

3 P(M) - real array. Input
On entry: the current estimate of the ith parameter, for i = 1,2....m.

4: M - INTEGER. Input
On entry: the number of parameters, m.

RANGE must be declared as EXTERNAL in the (sub)program from which DO2SAF is
called. Parameters denoted as Input must not be changed by this procedure.

- SUBROUTINE, supplied by the user. External Procedure
BC must place in G1 and G2 the boundary conditions at a and b respectively.
Its specification is:

SUBROUTINE BC(G1, G2, P, M, N)
INTEGER M, N
real G1(N), G2(N), P(M)

1: G1(N) - real array. Output
On exit: the value of y,(a), (where this may be a known value or a function of the
parameters p, forj = 12..,m), fori = 12...n.

2: G2(N) - real array. Output

On exit: the value of v, (b), fori = 1,2...,n, (where these may be known values
or functions of the parameters p;, forj = 12..,m).If n > n,, so that there are
some driving equations, then the first n — n, values of G2 need not be set since
they are never used.

3 P(M) - real array. Input
Onentry: an estimate of the ith parameter, p,, fori = 1,2...m.

4. M - INTEGER. Input

| On entry: the number of parameters, m.

5: N - INTEGER. Input

On entry: the number of differential equations, n.

BC must be declared as EXTERNAL in the (sub)program from which DO2SAF is called.
Parameters denoted as Input must not be changed by this procedure.

15: FCN - SUBROUTINE, supplied by the user. External Procedure

Page 6

FCN must evaluate the functions f; (i.e. the derivatives y,'), fori = 1,2....n.
Its specification is:

| —— S

SUBROUTINE FCN(X, ¥, F, N, P, M, I)

\

l INTEGER N, M, I

| real X, Y(N), F(N), P(M)

11 X - real. Input

. On entry: the value of the argument x.
2t Y(N) - real array. Input

1 On entry: the value of the argument, y,, fori = 12...,n.

[NP2834117)

D02 - Ordinary Differential Equations D02SAF

3: F(N) - real array. Output

On exit: the derivative of y; evaluated at x, for / = 1,2..,n. F(/) may depend
upon the parameters p, forj = 12...,m. If there are any driving equations (see
Section 3) then these must be numbered first in the ordering of the components of

F.

4: N - INTEGER. Input
On entry: the number of equations, n.

5. P(M) - real array. Input
On entry: the current estimate of the ith parameter, p , fori = 1,2..,m.

6: M - INTEGER. Input
On entry: the number of parameters, m.

7. I - INTEGER. Input
On entry: specifies the sub-interval [x,x,,] on which the derivatives are to be
evaluated.

FCN must be declared as EXTERNAL in the (sub)program from which DO2SAF is called.
Parameters denoted as /nput must not be changed by this procedure.

16: EQN - SUBROUTINE, supplied by the user. External Procedure

EQN is used to describe the additional algebraic equations to be solved in the determination
of the parameters, p,, for i = 1,2...,m. If there are no additional algebraic equations (i.e.
m = n,) then EQN is never called and the dummy routine DO2ZHBZ should be used as the
actual argument.

Its specification is:

SUBROUTINE EQN(E, Q, P, M)
INTEGER Q, M
real E(Q), P(M)

1: E(Q) - real array. Output

On exit: the vector of residuals, 7, (p), that is the amount by which the current
estimates of the parameters fail to satisfy the algebraic equations.

2: Q- INTEGER. Input
On entry: the number of algebraic equations, m — n,.

33 P(M) - real array. Input
On entry: the current estimate of the ith parameter p , for/ = 1,2...m.
4 M - INTEGER. Input

On entry: the number of parameters, m.

EQN must be declared as EXTERNAL in the (sub)program from which DO2SAF is called.
Parameters denoted as /nput must not be changed by this procedure.

17 CONSTR - LOGICAL FUNCTION, supplied by the user. External Procedure

CONSTR is used to prevent the pseudo-Newton iteration running into difficulty. CONSTR
should return the value .TRUE. if the constraints are satisfied by the parameters
PP ool - Otherwise CONSTR should return the value .FALSE.. Usually the dummy
functon DO2HBY, which returns the value .TRUE. at all times, will suffice and in the first
instance this is recommended as the actual parameter.

[NP2834/17) Page 7

DO02SAF

18:

19:

Page &

D02 —- Ordinary Differential Equations

Its specification is:

[

| LOGICAL FUNCTION CONSTR(P, M)

INTEGER M
real P(M)
1: P(M) - real array. Input

On entry: an estimate of the ith parameter, p,, fori/ = 1,2...,m.
22 M - INTEGER. Input
On entry: the number of parameters, m.

CONSTR must be declared as EXTERNAL in the (sub)program from which DO2SAF is
called. Parameters denoted as /nput must not be changed by this procedure.

YMAX - real. Input

On entrv: a non-negative value which is used as a bound on all values |y (x) ||.. where y(x)
is the solution at any point x between X(1) and X(NPOINT) for the current parameters
P PP If this bound is exceeded the integration is terminated and the current
parameters are rejected. Such a rejection will result in an error exit if it prevents the initial
residual or Jacobian, or the final solution, being calculated. If YMAX = 0 on entry, no
bound on the solution y is used; that is the integrations proceed without any checking on the
size of ||V||...

MONIT - SUBROUTINE, supplied by the user. External Procedure

MONIT enables the user to monitor the values of various quantities during the calculation.
It is called by DO2SAF after every calculation of the norm \D'J .»lI, which determines the
strategy of the Newton method, every time there is an internal error exit leading to a change
of strategy, and before an error exit when calculating the initial Jacobian. Usually the
routine DO2HBX will be adequate and the user is advised to use this as the actual parameter
for MONIT in the first instance. (In this case a call to X04ABF must be made prior to the
call of DO2SAF). If no monitoring is required, the dummy routine DO2SAS may be used.
(In some implementations of the Library the names DOZHBX and D0O2SAS are changed to
HBXDO02 and SASDO2: refer to the Users’ Note for your implementation).

Its specification is:

SUBROUTINE MONIT(ISTATE, IFLAG, IFAIL1, P, M, F, PNORM, PNORM1, EPS, D)

INTEGER ISTATE, IFLAG, IFAIL1, M

real P(M), F(M), PNORM, PNORM1, EPS, D(M)

1: ISTATE - INTEGER. Input
On entry: the state of the Newton iteration:
ISTATE = 0

the calculation of the residual, Jacobian and ||D"]*r||2 are taking place.
ISTATE = 1to 5
f2 (-ISTATE

during the Newton iteration a factor o
being used to try to reduce the norm.

ISTATE = 6

the current Newton step has been rejected and the Jacobian is being
re-calculated.

ISTATE = -6 10 -1

an internal error exit has caused the rejection of the current set of parameter
values, p. ~ISTATE is the value which ISTATE would have taken if the error
had not occurred.

+1) of the Newton step is

[NP2834117)

D02 - Ordinary Differential Equations D02SAF

10:

ISTATE = -7
an internal error exit has occurred when calculating the initial Jacobian.
IFLAG - INTEGER. Input

On entry: whether or not the Jacobian being used has been calculated at the
beginning of the current iteration. If the Jacobian has been updated then
IFLAG = 1; otherwise IFLAG = 2. The Jacobian is only calculated when
convergence to the current parameter values has been slow.

IFAIL1 - INTEGER. Input

Onentry: if -6 < ISTATE < -1, IFAIL1 specifies the IFAIL error number that
would be produced were control retumed to the user. IFAIL1 is unspecified for
values of ISTATE outside this range.

P(M) - real array. Input
On entry: the current estimate of the ith parameter, p,, fori = 1L2...,m.

M - INTEGER. Input
On entry: the number of parameters, m.

F(M) - real array. Input

On entry: the residual r corresponding to the current parameter values, provided
1 < ISTATE < 5or ISTATE = -7.F is unspecified for other values of ISTATE.

PNORM - real. Input
Onentry: a quantity against which all reductions in norm are currently measured.
PNORMI - real. Input

On entry: the norm of the current parameters, p. It is set for 1 < ISTATE < 5 and
is undefined for other values of ISTATE.

EPS - real. Input

Onentry: EPS gives some indication of the convergence rate. It is the current
singular value modification factor (see Gay [2]). It is O initially and whenever
convergence is proceeding steadily. EPS is & or greater (where £ may in most
cases be considered machine precision) when the singular values of J are
approximately zero or when convergence is not being achieved. The larger the
value of EPS the worse the convergence rate. When EPS becomes too large the
Newton iteration is terminated.

D(M) - real array. Input

On entry: the singular values of the current modified Jacobian matrix, J. If D(m)
is small relative to D(1) for a number of Jacobians corresponding to different
parameter values then the computed results should be viewed with suspicion. It
could be that the matching equations do not depend significantly on some
parameter (which could be due to a programming error in FCN, BC, RANGE or
EQN). Alternatively, the system of differential equations may be very ill-
conditioned when viewed as an initial value problem, in which case this routine is
unsuitable. This may also be indicated by some singular values being very large.
These values of D(/), i = 1,2...,m should not be changed.

[NP2834117)

MONIT must be declared as EXTERNAL in the (sub)program from which DO2SAF is
called. Parameters denoted as Input must not be changed by this procedure.

Page 9

DO02SAF D02 - Ordinary Differential Equations

20: PRSOL - SUBROUTINE, supplied by the user. External Procedure

PRSOL can be used to obtain values of the solution y at a selected point z by integration
across the final range [X(1),X(NPOINT)]. If no output is required DO2HBW can be used
as the actual parameter.

Its specification is:

|
SUBROUTINE PRSOL(Z, Y, N)
INTEGER N

real Z, Y(N)

1: Z -real Input/ Output

On entry: contains x, on the first call. On subsequent calls Z contains its previous
output value.

On exit: the next point at which output is required. The new point must be nearer
X(NPOINT) than the old.

If Z is set to a point outside [X(1),X(NPOINT)] the process stops and control
returns from DO02SAF to the (sub)program from which DO2SAF is called.

- Otherwise the next call to PRSOL is made by DO2SAF at the point Z, with
solution values y,,V,,....v, at Z contained in Y. If Z is set to X (NPOINT) exactly,
the final call to PRSOL is made with y,,v,,...,y, as values of the solution at
X (NPOINT) produced by the integration. In general the solution values obtained
at X(NPOINT) from PRSOL will differ from the values obtained at this point by
a call to routine BC. The difference between the two solutions is the residual r.
The user is reminded that the points X(1),X(2),...,X(NPOINT) are available in
the locations WP(1,4) WP(2,4),...,WP(NPOINT,4) at all times.

2: Y(N) - real array. Input
On entry: the solution value y; at z, fori = 12...,n.

3: N - INTEGER. Input
On entry: the total number of differential equations, n.

PRSOL must be declared as EXTERNAL in the (sub)program from which DO2SAF is
called. Parameters denoted as Input must not be changed by this procedure.

21: W(IW1,IW2) - real array. Output

Onexit: in the case of an error exit of the type where the point of failure is returned in
WP(1,5), the solution at this point of failure is returned in W(;1), fori = L2...,n.

Otherwise W is used for workspace.

22: IW1 - INTEGER. Input

On entry: the first dimension of the array W as declared in the (sub)program from which
DO2SAF is called.

Constraint: IW1 2 max(N,M).

23: W2 - INTEGER. Input

On entry: the second dimension of the array W as declared in the (sub)program from which
DO2ZSAF is called.

Constraint: IW2 =2 3xM + 12 + max(11,M).

24: [FAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0. -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

Page 10 (NP2834/17)

D02 -

Ordinary Differential Equations DO02SAF

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set [FAIL to -1 before entry. It is then essential to test
the value of IFAIL on exit. To suppress the output of an error message when soft failure
occurs, set IFAIL to 1.

Error Indicators and Warnings

Errors or wamnings specified by the routine:
IFAIL =

One or more of the parameters N, N1, M,IWP, NPOINT, ICOUNT, IW1, IW2, E, PE or
YMAX has been incorrectly set.

IFAIL = 2
The constraints have been violated by the initial parameters.

IFAIL = 3

The condition X(1) < X(2) < .. < X(NPOINT) (or X(1) > X(2) > ... >
X(NPOINT)) has been violated on a call to RANGE with the initial parameters.

IFAIL =

In the integration from X (1) to X(NPOINT) with the initial or the final parameters, the
step size was reduced too far for the integration to proceed. Consider reversing the order of
the points X (1),X(2),... X (NPOINT). If this error exit still results, it is likely that DO2SAF
is not a suitable method for solving the problem, or the initial choice of parameters is very
poor, or the accuracy requirement specified by E(7), for i = 1,2...,n, is too stringent.

IFAIL = 5

In the integration from X (1) to X(NPOINT) with the initial or final parameters, an initial
step could not be found to start the integration on one of the intervals X (i) to X(i+1).
Consider reversing the order of the points. If this error exit still results it is likely that
DO2SAF is not a suitable routine for solving the problem, or the initial choice of parameters
is very poor, or the accuracy requirement specified by E(7), for / = 1,2...,n, is much too
stringent.

IFAIL = 6
In the integration from X(1) to X(NPOINT) with the initial or final parameters, the
solution exceeded YMAX in magnitude (when YMAX > 0). It is likely that the initial
choice of parameters was very poor or YMAX was incorrectly set.
Note: on an error with IFAIL = 4, 5 or 6 with the initial parameters, the interval in which failure
occurs is contained in WP(NPOINT,1). If a subroutine MONIT similar to the one in Section 9
is being used then it is a simple matter to distinguish between errors using the initial and final
parameters. None of the error exits IFAIL = 4, 5 or 6 should occur on the final integration
(when computing the solution) as this integration has already been performed previously with
exactly the same parameters p,, for i = 1,2...,m. Seek expert help if this error occurs.

IFAIL = 7
On calculating the initial approximation to the Jacobian, the constraints were violated.

IFAIL = 8

On perturbing the parameters when calculating the initial approximation to the Jacobian, the
condition X(1) < X(2) < ... < X(NPOINT) (or X(1) > X(2) > ... > X(NPOINT))
is violated.

IFAIL = 9
On calculating the initial approximation to the Jacobian, the integration step size was
reducer’ - oo Lot menarnce (coo TRATT = 4)

[NP2834/17) Page 11

DO02SAF D02 - Ordinary Differential Equations

IFAIL = 10

On calculating the initial approximation to the Jacobian, the initial integration step size on
some interval was too small (see IFAIL = 5).

IFAIL = 11

On calculating the ‘initial approximation to the Jacobian, the solution of the system of
differential equations exceeded YMAX in magnitude (when YMAX > 0).

Note: all the error exits I[FAIL = 7, 8,9, 10 and 11 can be treated by reducing the size of some
or all the elements of DP.

IFAIL = 12

On calculating the initial approximation to the Jacobian, a column of the Jacobian is found
to be insignificant. This could be due to an element DP (i) being too small (but non-zero)
or the solution having no dependence on one of the parameters (a programming error).

Note: on an error exit with IFAIL = 7, 8, 9, 10, 11 or 12, if a perturbation of the parameter p;
is the cause of the error then WP(NPOINT,1) will contain the floating-point value of i.

IFAIL = 13

After calculating the initial approximation to the Jacobian, FO2SZF failed to calculate its

singular value decomposition (see the specification of FO2SZF for further discussion). It is

likely that the error will never occur as it is usually associated with the Jacobian having .
multiple singular values. To remedy the error it should only be necessary to change the

initial parameters. If the error persists it is likely that the problem has not been correctly

formulated.

IFAIL = 14

The Newton iteration has failed to converge after exercising all its options. The user is
strongly recommended to monitor the progress of the iteration via the parameter MONIT.
There are many possible reasons for the iteration not converging. Amongst the most likely
are:

(a) there is no solution;
(b) the initial parameters are too far away from the correct parameters;

(c) the problem is too ill-conditioned as an initial value problem for Newton’s method to
choose suitable corrections;

(d) the accuracy requirements for convergence are too restrictive, that is some of the
components of PE (and maybe PF) are too small - in this case the final value of this
norm output via MONIT will usually be very small; or

(e) the initial parameters are so close to the solution parameters p that the Newton iteration
cannot find improved parameters. The norm output by MONIT should be very small.

IFAIL = 15

The number of iterations permitted by ICOUNT has been exceeded (in the case when
ICOUNT > 0 on entry).

IFAIL = 16, 17, 18 and 19

These indicate that there has been a serious error in one of the auxiliary routines D02SAZ,
D02SAW, D02SAX or DO02SAU respectively. Check all subroutine calls and array
dimensions. Seek expert help.

7. Accuracy

If the iteration converges, the accuracy to which the unknown parameters are determined is
usually close to that specified by the user. The accuracy of the solution (output via PRSOL)
depends on the error tolerances E(/), for i = 1,2...,n. The user is strongly recommended to vary
all tolerances to check the accuracy of the parameters p and the solution).

Page 12 (NP2834117]

D02 - Ordinary Differential Equations D02SAF

8.

9.1.

Further Comments

The time taken by the routine depends on the complexity of the system of differential equations
and on the number of iterations required. In practice, the integration of the differential system
(1) is usually by far the most costly process involved. The computing time for integrating the
differential equations can sometimes depend critically on the quality of the initial estimates for
the parameters p. If it seems that too much computing time is required and, in particular, if the
values of the residuals (output in MONIT) are much larger than expected given the user’s
knowledge of the expected solution, then the coding of the subroutines FCN, EQN, RANGE and
BC should be checked for errors. If no errors can be found then an independent attempt should
be made to improve the initial estimates p.

In the case of an error exit in the integration of the differential system indicated by IFAIL = 4,
5, 9 or 10 the user is strongly recommended to perform trial integrations with DO2PDF to
determine the effects of changes of the local error tolerances and of changes to the initial choice
of the parameters p,, for i = 1,2..,m (that is the initial choice of p).

It is possible that by following the advice given in Section 6 an error exit with IFAIL = 7, 8, 9,
10 or 11 might be followed by one with IFAIL = 12 (or vice-versa) where the advice given is
the opposite. If the user is unable to refine the choice of DP (i), for i = 1,2...,n, such that both
these types of exits are avoided then the problem should be rescaled if possible or the method
must be abandoned.

The choice of the ‘floor’ values PF(7), for/ = 1,2...,m, may be critical in the convergence of the
Newton iteration. For each value 7, the initial choice of p; and the choice of PF(i/) should not
both be very small unless it is expected that the final parameter p, will be very small and that it
should be determined accurately in a relative sense.

For many problems it is critical that a good initial estimate be found for the parameters p or the
iteration will not converge or may even break down with an error exit. There are many
mathematical techniques which obtain good initial estimates for p in simple cases but which may
fail to produce useful estimates in harder cases. If no such technique is available it is
recommended that the user try a continuation (homotopy) technique preferably based on a
physical parameter (e.g. the Reynolds or Prandtl number is often a suitable continuation
parameter). In a continuation method a sequence of problems is solved, one for each choice of
the continuation parameter, starting with the problem of interest. At each stage the parameters p
calculated at earlier stages are used to compute a good initial estimate for the parameters at the
current stage (see Hall and Watt [1] for more details).

Example

The following example program is intended to illustrate the use of the break-point and equation
solving facilities of DO2SAF. Most of the facilities which are common to DO2SAF and DO2HBF
are illustrated in the example in the specification of DOZHBF (which should also be consulted).

The program solves a projectile problem in two media determining the position of change of
media, p;, and the gravity and viscosity in the second medium (p, represents gravity and p,
represents viscosity).

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2SAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N, M, NPOINT, IWP, NMMAX, IW1l, IW2, NI
PARAMETER (N=3,M=4 ,NPOINT=3, IWP=NPOINT, NMMAX=M, IW1=NMMAX,
+ IW2=3*M+23,N1=N)
INTEGER NOUT
PARAMETER (NOUT=6)

[NP2834117) Page 13

D02SAF D02 — Ordinary Differential Equations

* .. Scalars in Common ..
real XEND
INTEGER ICAP
* .. Local Scalars ..
real YMAX
INTEGER I, ICOUNT, IFAIL, J
* .. Local Arrays ..
real DP(M), E(N), P(M), PE(M), PF(M), W(IW1,IW2),
+ WP(IWP,6)
* .. External Functions
LOGICAL CONSTR
EXTERNAL CONSTR
* .. External Subroutines ..
EXTERNAL BC, DO2SAF, D02SAS, EQN, FCN, PRSOL, RANGE,
+ X04ABF
* .. Common blocks ..
COMMON /END/XEND, ICAP
* .. Executable Statements ..
WRITE (NOUT,*) ‘DO2SAF Example Program Results’
ICAP = 0
ICOUNT = 0
YMAX = 0.0e0
XEND = 5.0e0
DO 20 I =1, M
PE(I) = 1.0e-3
PF(I) = 1.0e-6
DP(I) = 0.0e0
20 CONTINUE
DO 40 I = 1, N
E(I) = 1.0e-5

40 CONTINUE
CALL XO04ABF(1,NOUT)
DO 80 I = 1, NPOINT - 1
DO 60 J =1, 3

WP(I,J) = 0.0e0

60 CONTINUE
80 CONTINUE

P(1) = 1.2e0

P(2) = 0.032e0

P(3) = 2.5e0

P(4) = 0.02e0

IFAIL = 1

* To obtain monitoring information, replace the name DO2SAS
by DO2HBX in the next statement and declare DO2HBX as external *

* o+ o

CALL DO2SAF(P,M,N,N1,PE,PF,E,DP,NPOINT, WP, IWP, ICOUNT, RANGE, BC, FCN,
+ EQN, CONSTR, YMAX,DO2SAS, PRSOL, W, IW1,IW2, IFAIL)

IF (IFAIL.NE.O) THEN
WRITE (NOUT,99999) ‘IFAIL = ’, IFAIL
IF (IFAIL.GE.4) THEN

IF (IFAIL.LE.12) WRITE (NOUT,99998) ’WP(NPOINT,1) = 7,
+ WP (NPOINT, 1)
IF (IFAIL.LE.6) THEN
WRITE (NOUT,99998) ‘WP(1,5) = 7, WP(1,5)
WRITE (NOUT,99997) ’W(.,1) 7, (W(I,1),I=1,N)
END IF
END IF
END IF

STOP
*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,A,F10.4)
99997 FORMAT (1X,A,10e10.3)
END

*

Page 14 [NP2834117)

DO02 - Ordinary Differential Equations

[NP1692/14)

SUBROUTINE EQN(F,Q,P,M)
Scalar Arguments ..

INTEGER M, Q
.. Array Arguments ..
real F(Q), P(M)

.. Executable Statements ..

F(1l) = 0.02¢0 — P(4) — 1.0e-5*P(3)
RETURN

END

SUBROUTINE FCN(X,Y,F,N,P,M,I)
.. Scalar Arguments ..

real X

INTEGER I, M, N

.. Array Arguments ..

real F(N), P(M), Y(N)
.. Intrinsic Functions ..
INTRINSIC COS, TAN

Executable Statements ..
F(l) = TAN(Y(3))
IF (I.EQ.1l) THEN

F(2) = -0.032e0*TAN(Y(3))/¥Y(2) - 0.02e0*Y(2)/COS(Y(3))
F(3) = -0.032e0/Y(2)**2

ELSE
F(2) = -P(2)*TAN(Y(3))/¥(2) - P(4)*Y¥(2)/COS(¥(3))
F(3) = -P(2)/Y(2)**2

END IF

RETURN

END

SUBROUTINE BC(F,G,P,M,N)
.. Scalar Arguments ..

INTEGER M, N
. Array Arguments ..

real F(N), G(N), P(M)

Executable Statements

F(1l) = 0.0e0

F(2) = 0.5e0

F(3) = P(1)

G(1l) = 0.0e0

G(2) = 0.45e€0

G(3) = -1.2e0

RETURN

END

SUBROUTINE RANGE (X, NPOINT,P,M)
Scalar Arguments

INTEGER M, NPOINT
Array Arguments ..

real P(M), X(NPOINT)
Scalars in Common

real XEND

INTEGER ICAP

.. Common blocks

COMMON /END/XEND, ICAP

.. Executable Statements ..
X(1) = 0.0e0

X(2) = P(3)
X(3) = XEND
RETURN

END

DO02SAF

Page 15

DO02SAF D02 — Ordinary Differential Equations

SUBROUTINE PRSOL(X,Y,N)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments
real X
INTEGER N
* .. Array Arguments
real Y(N)
* .. Scalars in Common
real XEND
INTEGER ICAP
* .. Local Scalars ..
INTEGER I
* .. Intrinsic Functions
INTRINSIC ABS
* .. Common blocks ..
COMMON /END/XEND, ICAP
* .. Executable Statements
IF (ICAP.NE.1l) THEN
ICAP = 1
WRITE (NOUT, *)
WRITE (NOUT,*) X Y(1) Y(2) Y(3)'
END IF
WRITE (NOUT, 99999) X, (Y(I),I=1,N)
X =X + 0.5e0
IF (ABS(X-XEND).LT.0.25e0) X = XEND
RETURN

99999 FORMAT (1X,F9.3,3F10.4)

END
*
LOGICAL FUNCTION CONSTR(P,M)
* .. Scalar Arguments
INTEGER M
* .. Array Arguments ..
real P (M)
* .. Local Scalars
INTEGER I
* .. Executable Statements
CONSTR = .TRUE.
DO 20I =1, M
IF (P(I).LT.0.0e0) CONSTR = .FALSE.
20 CONTINUE
IF (P(3).GT.5.0e0) CONSTR = .FALSE.
RETURN
END

9.2. Program Data
None.

9.3. Program Results
DO2SAF Example Program Results

X Y(1) Y(2) Y(3)
0.000 0.0000 0.5000 1.1753
0.500 1.0881 0.4127 1.0977
1.000 1.9501 0.3310 0.9802
1.500 2.5768 0.2582 0.7918
2.000 2.9606 0.2019 0.4796
2.500 3.0958 0.1773 0.0245
3.000 2.9861 0.1935 -0.4353
3.500 2.6289 0.2409 -0.7679
4.000 2.0181 0.3047 -0.9767
4.500 1.1454 0.3759 -1.1099
5.000 0.0000 0.4500 -1.2000

Page 16 [NP1692/14]

DO2 — Ordinary Differential Equations

D02SAF

With DO2HBX used instead of DO2SAS as an argument to DO2SAF in the example program,

intermediate results similar to those below are obtained:

DO2SAF MONITORING INFORMATION
INITIAL PARAMETERS ARE

1.200000E+00 3.200000E-02 2.500000E4+00 2.000000E-02
INITIAL NORM = 4.006420E+05
INITIAL RESIDUALS ARE
—-9.521764E-01 6.328063E-02 -7.293026E-02 —-2.500000E-05
SINGULAR VALUES ARE
1.271777E+02 2.783856E+00 9.940481E-01 6.357504E-06
intermediate results omitted
D02SAF MONITORING INFORMATION
STEP WITH ISTATE = 1 AND IFLAG = 2
CURRENT PARAMETERS ARE
1.175331E4+00 3.045430E-02 2.330241E+4+00 1.997670E-02
BASIC NORM = 3,528809E-08 CURRENT NORM = 1.013181E-09
CURRENT RESIDUALS ARE
—-7.859726E-06 3.327722E-07 -3.676384E-07 —-3.896352E-19
SINGULAR VALUES ARE
1.155687E+02 2.019313E+00 9.563721E-01 3.445298E-03
SINGULAR VALUE PERTURBATION FACTOR = 0.0000E+00

[NP1692/14]

Page 17 (last)

DO2 - Ordinary Differential Equations DO2TGF

DO02TGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

)

Purpose

DO2TGF solves a system of linear ordinary differential equations by least-squares fitting of a
series of Chebyshev polynomials using collocation.

Specification
SUBROUTINE DO2TGF (N, M, L, X0, X1, K1, KP, C, IC, COEFF, BDYC, W,
1 LW, IW, LIW, IFAIL)
INTEGER N, M(N), L(N), K1, KP, IC, LW, IW(LIW), LIW,
1 IFAIL
real X0, X1, C(IC,N), W(LW)
EXTERNAL COEFF, BDYC
Description

The routine calculates an approximate solution of a linear or linearised system of ordinary
differential equations as a Chebyshev-series. Suppose there are n differential equations for n
variables y,,y,,....y,, over the range (x,,x,). Let the ith equation be

m+l

Y Xf 0y = rix)
&l k=1

d'y (x)
g

where y (x) = " The routine COEFF provided by the user evaluates the coefficients

fi;(x) and the right-hand side r'(x) for each i, 1 < i < n, at any point x. The boundary
conditions may be applied either at the end-points or at intermediate points; they are written in
the same form as the differential equations, and specified by the routine BDYC. For example the
jth boundary condition out of those associated with the ith differential equation takes the form

l'+l n . .o . Py .. I3

S S AW W) = W),

L k=1
where x” lies between x, and x,. It is assumed in this routine that certain of the boundary
conditions are associated with each differential equation. This is for the user’s convenience; the
grouping does not affect the results.

The degree of the polynomial solution must be the same for all variables. The user specifies the
degree required, k, -1, and the number of collocation points, k,, in the range. The routine sets up
a system of linear equations for the Chebyshev coefficients, with n equations for each collocation
point and one for each boundary condition. The collocation points are chosen at the extrema of
a shifted Chebyshev polynomial of degree k,—1. The boundary conditions are satisfied exactly,
and the remaining equations are solved by a least-squares method. The result produced is a set of
Chebyshev coefficients for the n functions y,,y,,...,y,, with the range normalised to [-1,1].

E02AKF can be used to evaluate the components of the solution at any point on the range [x,.x,]
(see Section 9 for an example). EO2AHF and E02AJF may be used to obtain Chebyshev-series
representations of derivatives and integrals (respectively) of the components of the solution.

References

[1] PICKEN, S.M.
Algorithms for the Solution of Differential Equations in Chebyshev-series by the Selected
Points Method.
Report Math., 94, National Physical Laboratory, Teddington, 1970.

[NP1692/14] Page 1

DO02TGF D02 — Ordinary Differential Equations

5.
1:

Parameters

N — INTEGER. Input
On entry: the number of differential equations in the system, n.
Constraint: N 2 1.

M(N) — INTEGER array. Input

On entry: M(i) must be set to the highest order derivative occurring in the ith equation, for
i=12,.,N.

Constraint: M(i) 2 1, fori = 1,2,...n.

L(N) — INTEGER array. Input

On entry: L(i) must be set to the number of boundary conditions associated with the i(th)
equation, for i = 1,2,...,n.

Constraint: L(i) 2 0, fori = 1,2,...,n.

X0 — real. Input
On entry: the left-hand boundary, x,,.

X1 — real. Input
On entry: the right-hand boundary, x,.
Constraint: X1 > X0.

K1 - INTEGER. Input

Onentry: the number of coefficients, k,, to be returned in the Chebyshev-series
representation of the solution (hence, the degree of the polynomial approximation is
K1-1).

Constraint: K1 2 1 + max M(i).
1SiSN

KP — INTEGER. Input
On entry: the number of collocation points to be used, k,,.

N
Constraint: NxXKP 2 NxK1 + Y L(i).
i=1
C(IC,N) — real array. Output

Onexit: the kth column of C contains the computed Chebyshev coefficients of the kth
component of the solution, y,; that is, the computed solution is:

kl
Yo = 2 CUGKT_ (x), 1 Sk <n,

=1
where T, (x) is the Chebyshev polynomial of the first kind and X' denotes that the first
coefficient, C(1,k), is halved.

IC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
DO2TGF is called.

Constraint: IC 2 K1.

Page 2 [NP1692/14)

D02 — Ordinary Differential Equations DO02TGF

10: COEFF — SUBROUTINE, supplied by the user. External Procedure

COEFF defines the system of differential equations (see Section 3). It must evaluate the
coefficient functions f}; (x) and the right-hand side function r’(x) of the i(th) equation at a
given point. Only non-zero entries of the array A and RHS need be specifically assigned,
since all elements are set to zero by DO2TGF before calling COEFF.

Its specification is:

SUBROUTINE COEFF (X, I, A, IA, IAl, RHS)

INTEGER I, IA, IAl
real X, A(IA,IAl), RHS

Important: the dimension declaration for A must contain the variable IA, not an integer

constant.

I X —real. Input
On entry: the point x at which the functions must be evaluated.

2: I - INTEGER. Input
On entry: the equation for which the coefficients and right-hand side are to be
evaluated.

3: A(IAJA1) - real array. Input/ Output

On entry: all elements of A are set to zero.
On exit: A(k;j) must contain the value f,;(x), for 1 < k < n, 1 £ j < m+1.

4: A - INTEGER. Input

5: 1Al - INTEGER. Input
On entry: the first and second dimensions of A, respectively.

6: RHS — real. Input/ Output

On entry: RHS is set to zero.

| On exit: it must contain the value r' (x).

COEFF must be declared as EXTERNAL in the (sub)program from which DO2TGF is
called. Parameters denoted as /nput must not be changed by this procedure.

11: BDYC - SUBROUTINE, supplied by the user. External Procedure
BDYC defipes the boundary conditions (see Section 3). It must evaluate the coefficient
functions f}; and right-hand side function ¥ in the jth boundary condition associated with

the ith equation, at the point x” at which the boundary condition is applied. Only non-zero
entries of the array A arid RHS need be specifically assigned, since all elements are set to
zero by DO2TGF before calling BDYC.

Its specification is:

1

' SUBROUTINE BDYC(X, I, J, A, IA, IAl, RHS)

INTEGER I, J, IA, IAl
| real X, A(IA,IAl), RHS
- Important: the dimension declaration for A must contain the variable IA, not an integer
| constant.
'1: X —real. Output
: On exit: the value x” at which the boundary condition is applied.
122 I - INTEGER. : Input
; On entry: the differential equation with which the condition is associated.
'3+ J - INTEGER. Input

] On entry: the boundary condition for which the coefficients and right-hand side
1 are to be evaluated.

[NP1692/14) Page 3

DO2TGF D02 - Ordinary Differential Equations

12:
13:

14:
15:

16:

Page 4

4: A(IAJA1) — real array. Input! Output
, On entry: all elements of A are set to zero.
! On exir: the value fi/(x7) for 1 < k < n, 1 < j < m+1.

5: 1A — INTEGER. Input

6: 1Al — INTEGER. Input
On entry: the first and second dimensions of A, respectively.

7. RHS - real. Input/ Output

On entry: RHS is set to zero.

On exit: the value r(x7).

BDYC must be declared as EXTERNAL in the (sub)program from which DO2TGF is
called. Parameters denoted as Input must not be changed by this procedure.

W(LW) — real array. Workspace
LW — INTEGER. Input

On entry: the dimension of the array W as declared in the (sub)program from which
DO2TGF is called.

Constraint: LW 2 2x(NXKP+NL)x(NxK1+1) + 7xNxK1, where NL = Y L(i).

i=1
IW(LIW) — INTEGER array. Workspace
LIW — INTEGER. Input

On entry: the dimension of the array IW as declared in the (sub)program from which
DO2TGF is called.

Constraint: LIW 2 NxK1 + 1.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
Onentry, N < 1,
or M(i) < 1 for some i,
or L(i) < 0 for some i,
or X0 = X1,
or K1 < 1 + M(i) for some i,
or NxKP < NxK1 + Y L(i),
i=1
or IC < K1.
IFAIL = 2
On entry, LW is too small (see Section 5),
or LIW < NxKI1.
IFAIL = 3

Either the boundary conditions are not linearly independent, or the rank of the matrix of
equations for the coefficients is less than the number of unknowns. Increasing KP may
overcome this latter problem.

[NP1692/14]

D02 — Ordinary Differential Equations DO02TGF

IFAIL = 4

The least-squares routine FO4AMF has failed to correct the first approximate solution (see
NAG Fortran Library document FO4AMF). Increasing KP may remove this difficulty.

7. Accuracy

Estimates of the accuracy of the solution may be obtained by using the checks described in
Section 8. The Chebyshev coefficients are calculated by a stable numerical method.

8. Further Comments

The time taken by the routine depends on the complexity of the system of differential equations,
the degree of the polynomial solution and the number of matching points.

If the number of matching points k, is equal to the number of coefficients £, minus the average

number of boundary conditions 12 l;, then the least-squares solution reduces to simple solution
i=1

of linear equations and true collocation results. The accuracy of the solution may be checked by

repeating the calculation with different values of k,. If the Chebyshev coefficients decrease

rapidly, the size of the last two or three gives an indication of the error. If they do not decrease

rapidly, it may be desirable to use a different method. Note that the Chebyshev coefficients are

calculated for the range normalised to [-1,1].

Generally the number of boundary conditions required is equal to the sum of the orders of the n
differential equations. However, in some cases fewer boundary conditions are needed, because
the assumption of a polynomial solution is equivalent to one or more boundary conditions (since
it excludes singular solutions).

A system of nonlinear differential equations must be linearised before using the routine. The
calculation is repeated iteratively. On each iteration the linearised equation is used. In the
example in Section 9, the y variables are to be determined at the current iteration whilst the z
variables correspond to the solution determined at the previous iteration, (or the initial
approximation on the first iteration). For a starting approximation, we may take, say, a linear
function, and set up the appropriate Chebyshev coefficients before starting the iteration. For
example, if y, = ax + b in the range (x,,x,), we set B, the array of coefficients,

B(1,1) = ax(xy,+x,) + 2xb,
B(1,2) = ax(x;—x4)/2,
and the remainder of the entries to zero.

In some cases a better initial approximation may be needed and can be obtained by using
EO02ADF or E02AFF to obtain a Chebyshev-series for an approximate solution. The coefficients
of the current iterate must be communicated to COEFF and BDYC, e.g. in COMMON. (See the
example in Section 9). The convergence of the (Newton) iteration cannot be guaranteed in
general, though it is usually satisfactory from a good starting approximation.

9. Example
To solve the nonlinear system
2y, + (y3-1)y, +y, =0,
Zy; =1 =0,
in the range (—1,1), withy, = 0,y, = 3,y, = Oatx = -1.
Suppose an approximate solution is z,, z, such that y, ~ z,, y, ~ z,: then the first equation
gives, on linearising,
2y, + (zzz—l)yl + (2z,2,+1)y, = 2,23
The starting approximation is taken to be z, = 0, z, = 3. In the program below, the array B is
used to hold the coefficients of the previous iterate (or of the starting approximation). We iterate

until the Chebyshev coefficients converge to 5 figures. EO2AKF is used to calculate the solution
from its Chebyshev coefficients.

[NP1692/14] Page 5

DO2TGF D02 — Ordinary Differential Equations

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* DO2TGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N, MIMAX, K1, IC, KP, LSUM, LW, LIW
PARAMETER (N=2,MIMAX=8, K1=MIMAX+1, IC=K1, KP=15, LSUM=3,
+ LW=2* (N*KP+LSUM) * (N*K1+1)+7*N*K1l, LIW=N*K1)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
real X0, X1
* .. Arrays in Common ..
real B(K1,N)
* .. Local Scalars ..
real EMAX, X
INTEGER I, IAl, IFAIL, ITER, J, K
* .. Local Arrays ..
real C(IC,N), W(LW), Y(N)
INTEGER IW(LIW), L(N), M(N)
* .. External Subroutines
EXTERNAL BDYC, COEFF, DO2TGF, EOQO2AKF
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, real
* .. Common blocks ..
COMMON /ABC/B, X0, X1
* .. Executable Statements ..
WRITE (NOUT,*) ’‘DO2TGF Example Program Results’
X0 = -1.0e0
X1l = 1.0e0
M(l) =1
M(2) = 2
L(l) =1
L(2) = 2

DO 40 J =1, N
DO 20 I =1, Kl
B(I,J) = 0.0e0
20 CONTINUE
40 CONTINUE
B(1,2) = 6.0e0
ITER = 0
60 ITER = ITER + 1
WRITE (NOUT, *)
WRITE (NOUT,99999) ’ Iteration’, ITER,
+ ' Chebyshev coefficients are’
IFAIL = 1

CALL DO2TGF(N,M,L,X0,X1,K1,KP,C,IC,COEFF,BDYC,W, LW, IW, LIW, IFAIL)

IF (IFAIL.EQ.0) THEN
DO 80 J =1, N
WRITE (NOUT,99998) (C(I,J),I=1,K1)
80 CONTINUE
EMAX = 0.0e0
DO 120 J =1, N
DO 100 I = 1, K1
EMAX = MAX(EMAX,ABS(C(I,J)-B(I,J)))
B(I,J) = C(I,J)

100 CONTINUE
120 CONTINUE
IF (EMAX.LT.1.0e-5) THEN
K=29
Ial =1

WRITE (NOUT, *)
WRITE (NOUT, 99999) ’Solution evaluated at’, K,
+ ! equally spaced points’

Page 6 [NP1692/14)

D02 — Ordinary Differential Equations

140

160

99999
99998
99997
99996

[NP1692/14]

WRITE (NOUT, *)
WRITE (NOUT,99997) ’ X ’, (J,J=1,N)
DO 160 I =1, K
X = (X0*real(K-I)+X1l+real(I-1))/real(K-1)
DO 140 J =1, N
IFAIL = 0

CALL EOZAKF(K1,x0,Xx1,C(1,dJ),IAl,Kl,X,Y(J),IFAIL)

CONTINUE
WRITE (NOUT,99996) X, (Y(J),J=1,N)
CONTINUE
ELSE
GO TO 60
END IF
ELSE
WRITE (NOUT, *)
WRITE (NOUT,99999) ’DO2TGF fails with IFAIL =’, IFAIL
END IF
STOP

FORMAT (1X,A,I3,A)

FORMAT (1X,9F8.4)

FORMAT (1X,A,2(’ Y(’/,I1,7)7))
FORMAT (1X,3F10.4)

END

SUBROUTINE COEFF(X,I,A,IA,IAl,RHS)
Parameters
INTEGER N, MIMAX, K1
PARAMETER (N=2,MIMAX=8, K1=MIMAX+1)
.. Scalar Arguments
real RHS, X
INTEGER I, IA, Ial
.. Array Arguments ..
real A(IA,IALl)
.. Scalars in Common
real X0, X1
Arrays in Common ..
real B(K1,N)
.. Local Scalars
real 71, 22
INTEGER IFAIL
External Subroutines
EXTERNAL EQO2AKF
Common blocks
COMMON /ABC/B, X0, X1
.. Executable Statements
IF (I.LE.1) THEN
IAl = 1
IFAIL = 0

CALL EO2AKF(K1,X0,X1,B(1,1),IAl,K1l,X,21,IFAIL)
CALL EO2AKF(K1l,X0,X1,B(1,2),IAl,K1,X,22,IFAIL)

A(l,1) = z22*22 - 1.0e0
A(l,2) = 2.0e0
A(2,1) = 2.0e0*z21+22 + 1.0e0
RHS = 2.0e0*21*22*22

ELSE
A(l,2) = -1.0e0
A(2,3) = 2.0e0

END IF

RETURN

END

SUBROUTINE BDYC(X,I,J,A,IA,IAl,RHS)
Scalar Arguments

real RHS, X

INTEGER I, Ia, IAl, J

DO02TGF

Page 7

DO2TGF

. Array Arguments

real A(IA,IAl)

.. Executable Statements

X = -1.0e0

A(I,J) = 1.0e0

IF (I.EQ.2 .AND. J.EQ.1l) RHS = 3.0e0
RETURN

END

9.2. Program Data
None.

9.3. Program Results
DO2TGF Example Program Results

D02 — Ordinary Differential Equations

Iteration 1 Chebyshev coefficients are
-0.5659 -0.1162 0.0906 -0.0468 0.0196 -0.0069 0.0021 -0.0006 .0001
5.7083 -0.1642 -0.0087 0.0059 -0.0025 0.0009 -0.0003 0.0001 .0000
Iteration 2 Chebyshev coefficients are
-0.6338 -0.1599 0.0831 -0.0445 0.0193 -0.0071 0.0023 -0.0006 .0001
5.6881 -0.1792 -0.0144 0.0053 -0.0023 0.0008 -0.0003 0.0001 .0000
Iteration 3 Chebyshev coefficients are
-0.6344 -0.1604 0.0828 -0.0446 0.0193 -0.0071 0.0023 -0.0006 .0001
5.6880 -0.1793 -0.0145 0.0053 -0.0023 0.0008 -0.0003 0.0001 .0000
Iteration 4 Chebyshev coefficients are
-0.6344 -0.1604 0.0828 -0.0446 0.0193 -0.0071 0.0023 -0.0006 .0001
5.6880 -0.1793 -0.0145 0.0053 -0.0023 0.0008 -0.0003 0.0001 .0000
Solution evaluated at 9 equally spaced points
X Y(1) Y(2)
-1.0000 0.0000 3.0000
-0.7500 -0.2372 2.9827
-0.5000 -0.3266 2.9466
-0.2500 -0.3640 2.9032
0.0000 -0.3828 2.8564
0.2500 -0.3951 2.8077
0.5000 -0.4055 2.7577
0.7500 -0.4154 2.7064
1.0000 -0.4255 2.6538
Page 8 (last) [NP1692/14)

D02 - Ordinary Differential Equations DO2TKF

DO02TKF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO2TKF solves a general two point boundary value problem for a nonlinear mixed order system of
ordinary differential equations.

2 Specification

SUBROUTINE DO2TKF(FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS,

1 WORK, IWORK, IFAIL)
INTEGER IWORK (%), IFAIL
real WORK (%)
EXTERNAL FFUN, FJAC, GAFUN, GBFUN, GAJAC, GBJAC, GUESS

3 Description

DO02TKF and its associated routines (DO2TVF, D02TXF, DO2TYF and D02TZF) solve the two point
boundary value problem for a nonlinear mixed order system of ordinary differential equations

1 -1 —
() = fl(r,yl,yﬁl),-u,yﬁ"” l),yz,...yﬁm" D)
ygm2)(x) = f2(xvy11y§,)1"'vy(1ml—))y21"‘y$)mn_1))
1 -1 -
yr@) = fumrY ™ T)

over an interval [a,b] subject to p (> 0) nonlinear boundary conditions at a and ¢ (> 0) nonlinear

n

boundary conditions at b, where p + ¢ = Zmi. Note that ygm)(:c) is the m-th derivative of the i-th
1

solution component. Hence ygo)(:z:) = y,(z). The left boundary conditions at a are defined as

9:(z(y(a))) =0, 7=1,2,...,p,
and the right boundary conditions at b as

9;(z(y(6))) =0, j=12,...,q,
where y = (y;,¥5,---, ¥,) and

(@) = (1(2), 11 @), - ™ V(@) (@), (@),

First, DO2TVF must be called to specify the initial mesh, error requirements and other details. Note that
the error requirements apply only to the solution components y,,¥,,...,y, and that no error control is
applied to derivatives of solution components. (If error control is required on derivatives then the system
must be reduced in order by introducing the derivatives whose error is to be controlled as new variables.
See Section 8 of the document for DO2TVF.) Then, DO2TKF can be used to solve the boundary value
problem. After successful computation, DO2TZF can be used to ascertain details about the final mesh and
other details of the solution procedure, and DO2TYF can be used to compute the approximate solution
anywhere on the interval [a, b].

A description of the numerical technique used in DO2TKF is given in Section 3 of the document for
DO2TVF.

DO02TKF can also be used in the solution of a series of problems, for example in performing continuation,
when the mesh used to compute the solution of one problem is to be used as the initial mesh for the
solution of the next related problem. DO2TXF should be used in between calls to DO2TKF in this context.

[NP2834/17] DO2TKF.1

D02TKF D02 - Ordinary Differential Equations

See Section 8 of the document for DO2TVF for details of how to solve boundary value problems of a more
general nature.

The routines are based on modified versions of the codes COLSYS and COLNEW, [2] and [1] . A
comprehensive treatment of the numerical solution of boundary value problems can be found in (3] and

[4].

4 References
[1] Ascher U M and Bader G (1987) A new basis implementation for a mixed order boundary value
ODE solver SIAM J. Sci. Stat. Comput. 8 483-500
[2] Ascher U M, Christiansen J and Russell R D (1979) A collocation solver for mixed order systems
of boundary value problems Math. Comput. 33 659-679
[3] Ascher U M, Mattheij R M M and Russell R D (1988) Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations Prentice Hall, Englewood Cliffs, NJ
[4] Keller H B (1992) Numerical Methods for Two-point Boundary-value Problems Dover, New York
5 Parameters
1: FFUN — SUBROUTINE, supplied by the user. External Procedure
FFUN must evaluate the functions f; for given values z, z(y(z)).
Its specification is: ‘
SUBROUTINE FFUN(X, Y, NEQ, M, F)
INTEGER NEQ, M(NEQ)
real X, Y(NEQ,O0:%), F(NEQ)
1: X —real Input
On entry: the independent variable, x.
2: Y(NEQ,0:x) — real array Input
On entry: Y (i, j) contains y,(j)(:c), fori=1,2,...,NEQ, j=0,1,...,M(i) - 1.
Note: y,(o)(a:) = y;(z).
3: NEQ — INTEGER Input
On entry: the number of differential equations.
4: M(NEQ) — INTEGER array Input
On entry: the order, m;, of the i-th differential equation, for i = 1,2,...,NEQ.
5: F(NEQ) — real array Qutput
On ezit: the values of f;, for i =1,2,...,NEQ.
FFUN must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.
Parameters denoted as Input must not be changed by this procedure.
2: FJAC — SUBROUTINE, supplied by the user. FEzternal Procedure

FJAC must evaluate the partial derivatives of f; with respect to the elements of
(@) (= @@ ¥ @) ™ T @), (@), T (@)).

DO2TKF.2 [NP2834/17]

D02 - Ordinary Differential Equations D02TKF

Its specification 1is:
SUBROUTINE FJAC(X, Y, NEQ, M, DFDY)
INTEGER NEQ, M(NEQ)
real X, Y(NEQ,O0:%x), DFDY(NEQ,NEQ,O0:x*)

1: X — real Input
On entry: the independent variable, «.

2: Y(NEQ,0:x) — real array Input
On entry: Y(i, j) contains y*)(z), for i =1,2,...,NEQ, = 0,1,...,M(i) - 1.
Note: ygo)(x) = y;(x).

3: NEQ — INTEGER Input
On entry: the number of differential equations.

4: M(NEQ) — INTEGER array Input
On entry: the order, m,, of the i-th differential equation, for i = 1,2,..., NEQ.

5: DFDY(NEQ,NEQ,0:x) — real array Qutput

On exit: DFDY(s,j, k) must contain the partial derivative of f; with respect to y§k), for
i,7=1,2,...,NEQ, k=0,1,...,M(j) — 1. Only non-zero partial derivatives need be set.

FJAC must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.

Parameters denoted as Input must not be changed by this procedure.

3: GAFUN — SUBROUTINE, supplied by the user. Ezxternal Procedure

GAFUN must evaluate the boundary conditions at the left hand end of the range, that is functions

9:(z(y(a))) for given values of 2(y(a)).

Its specification is:

SUBROUTINE GAFUN(YA, NEQ, M, NLBC, GA)
INTEGER NEQ, M(NEQ), NLBC
real YA(NEQ,O:*), GA(NLBC)

1: YA(NEQ,0:x¥) — real array

Note: ygo)(a) = y;(a).
2: NEQ — INTEGER

On entry: the number of differential equations.
3: M(NEQ) — INTEGER array

On entry: the order, m;, of the i-th differential equation, for 7 = 1,2,... NEQ.
4: NLBC — INTEGER

On entry: the number of boundary conditions at a.

5: GA(NLBC) — real array
On exit: the values of g;(z(y(a))), for i = 1,2,...,NLBC.

On entry: YA(, j) contains yf-j)(a), fori=1,2,...,.NEQ, j=0,1,...,M(¢) - 1.

Input

Input

Input

Input

Qutput

GAFUN must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.

Parameters denoted as Input must not be changed by this procedure.

[NP2834/17]

DO2TKF.3

D02TKF D02 - Ordinary Differential Equations

4: GBFUN — SUBROUTINE, supplied by the user. Ezxternal Procedure

GBFUN must evaluate the boundary conditions at the right hand end of the range, that is functions
9;(z(y(b))) for given values of z(y(b)).

Its specification is:

SUBROUTINE GBFUN(YB, NEQ, M, NRBC, GB)

INTEGER NEQ, M(NEQ), NRBC
real YB(NEQ,O:%), GB(NRBC)
1: YB(NEQ,0:x) — real array Input

On entry: YB(3, j) contains y)(b), fori = 1,2,...,NEQ, j =0,1,...,M(i) — L.
Note: 3*)(5) = v,(b).

2: NEQ — INTEGER Input
On entry: the number of differential equations.

3: M(NEQ) — INTEGER array Input
On entry: the order, m;, of the i-th differential equation, for i = 1,2,...,NEQ.

4: NRBC — INTEGER Input
On entry: the number of boundary conditions at b.

5: GB(NRBC) — real array Output

On ezit: the values of g,(2(y(b))), for i = 1,2,...,NRBC.

GBFUN must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.
Parameters denoted as Input must not be changed by this procedure.

5: GAJAC — SUBROUTINE, supplied by the user. Ezternal Procedure

GAJAC must evaluate the partial derivatives of g;(z(y(a))) with respect to the elements of
2(u(@) (= (11 (@) 31(a), - 1™ V@), w(a), - D (@),
Its specification 1s:

SUBROUTINE GAJAC(YA, NEQ, M, NLBC, DGADY)

INTEGER NEQ, M(NEQ), NLBC
real YA(NEQ,O0:%), DGADY(NLBC,NEQ,O:*)
1: YA(NEQ,0:x) — real array Input

On entry: YA(i, j) contains yi?)(a), for i = 1,2,...,NEQ, j =0,1,...,M(z) — 1.
Note: y‘(»o)(a) = y,(a).

2: NEQ — INTEGER Input
On entry: the number of differential equations.

3: M(NEQ) — INTEGER array Input
On entry: the order, m,, of the i-th differential equation, for i = 1,2,... NEQ.

4: NLBC — INTEGER Input
On entry: the number of boundary conditions at a.

5: DGADY(NLBC,NEQ,0:x) — real array Output

On exit: DGADY(7, j, k) must contain the partial derivative of g;(z(y(a))) with respect to

y;k)(a), fori =1,2,....NLBC., j = 1,2,...,NEQ, £k = 0,1,....M(j) — 1. Only non-zero
partial derivatives need be set.

D02TKF .4 [NP2834/17]

D02 - Ordinary Differential Equations DO2TKF

GAJAC must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.
Parameters denoted as Input must not be changed by this procedure.

6: GBJAC — SUBROUTINE, supplied by the user. External Procedure

GBJAC must evaluate the partial derivatives of g,(z(y(b))) with respect to the elements of
2W(®) (= (2 (), i (), 4™ TV (), wa(b), . " (D)),
Its specification is:

SUBROUTINE GBJAC(YB, NEQ, M, NRBC, DGBDY)

INTEGER NEQ, M(NEQ), NRBC
real YB(NEQ,O:*), DGBDY(NRBC,NEQ,O:x*)
1: YB(NEQ,0:x) — real array Input

On entry: YB(i,j) contains y,(j)(b), fori=1,2,...,NEQ, j=0,1,...,M(@) - 1.
Note: ygo)(b) = y,(b).

2: NEQ — INTEGER Input
On entry: the number of differential equations.

3: M(NEQ) — INTEGER array Input
On entry: the order, m,, of the i-th differential equation, for i =1,2,... NEQ.

4: NRBC — INTEGER Input
On entry: the number of boundary conditions at a.

5: DGBDY(NRBC,NEQ,0:x) — real array Output

On erit: DGBDY(4,j, k) must contain the partial derivative of g,(z(y(b))) with respect to
y(b), for i = 1,2,...,NRBC, j = 1,2,...,NEQ, k = 0,1,...,M(j) = 1. Only non-zero
partial derivatives need be set.

GBJAC must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.
Parameters denoted as Input must not be changed by this procedure.

7: GUESS — SUBROUTINE, supplied by the user. Ezternal Procedure

GUESS must return initial approximations for the solution compontents ylm and the derivatives
yf.m‘), fori=1,2,....NEQ, j =0,1,...,M(7) — 1. Try to compute each derivative yf»m') such that
it corresponds to your approximations to yﬁj) for j =0,1,...,M(¢) — 1. You should not call FFUN

to compute yﬁm‘).

If DO2TKF is being used in conjunction with DO2TXF as part of a continuation process, then
GUESS is not called by DO2TKF after the call to DO2TXF.

Its specification is:

SUBROUTINE GUESS(X, NEQ, M, Y, DYM)

INTEGER M(NEQ), NEQ
real X, Y(NEQ,O:x), DYM(NEQ)

1: X —real Input
On entry: the independent variable, z; = € [a, b].

2: NEQ — INTEGER Input

On entry: the number of differential equations.

[NP2834/17] D02TKF.5

D02TKF D02 - Ordinary Differential Equations

3: M(NEQ) — INTEGER array Input
On entry: the order, m,, of the i-th differential equation, for ¢ = 1,2,...,NEQ.
4: Y(NEQ,0:x) — real array Output

On ezit: Y(i,j) must contain y\’)(z), fori = 1,2,...,NEQ, j =0,1,...,M(@) - 1.
Note: yf-o)(z) = y,(z).

5: DYM(NEQ) — real array Output
On ezit: DYM(:) must contain y,(m')(m), fori=1,2,...,NEQ.

10:

6

GUESS must be declared as EXTERNAL in the (sub)program from which DO2TKF is called.
Parameters denoted as Input must not be changed by this procedure.

WORK(*) — real array Input/Output

On eniry: this must be the same array as supplied to DO2TVF and must remain unchanged between
calls.

On ezit: contains information about the solution for use on subsequent calls to associated routines.

IWORK(*) — INTEGER array ' Input/Output

On entry: this must be the same array as supplied to DO2TVF and must remain unchanged between
calls.

On ezil: contains information about the solution for use on subsequent calls to associated routines.

IFAIL — INTEGER Input/Qutput

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On ezit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0 on exit,
users are recommended to set IFAIL to —1 before entry. It is then essential to test the value of
IFAIL on exit.

Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, an invalid call was made to DO2TKF, for example, without a previous call to the setup
routine DO2TVF. If on entry IFAIL = 0 or —1, the precise form of the error will be detailed on
the current error message unit (as defined by X04AAF).

IFAIL = 2

Numerical singularity has been detected in the Jacobian used in the underlying Newton iteration.
No meaningful results have been computed. You should check carefully how you have coded
procedures FJAC, GAJAC and GBJAC. If the procedures have been coded correctly then supplying
a different initial approximation to the solution in GUESS might be appropriate. See also Section
8.

DO2TKF.6 [NP2834/17]

D02 - Ordinary Differential Equations DO2TKF

IFAIL = 3

The nonlinear iteration has failed to converge. At no time during the computation was convergence
obtained and no meaningful results have been computed. You should check carefully how you have
coded procedures FJAC, GAJAC and GBJAC. If the procedures have been coded correctly then
supplying a better initial approximation to the solution in GUESS might be appropriate. See also
Section 8.

IFAIL =4

The nonlinear iteration has failed to converge. At some earlier time during the computation
convergence was obtained and the corresponding results have been returned for diagnostic purposes
and may be inspected by a call to DO2TZF. Nothing can be said regarding the suitability of these
results for use in any subsequent computation for the same problem. You should try to provide a
better mesh and initial approximation to the solution in GUESS. See also Section 8.

IFAIL =5

The expected number of sub-intervals required exceeds the maximum number specified by the
argument MXMESH in the setup routine DO2TVF. Results for the last mesh on which convergence
was obtained have been returned. Nothing can be said regarding the suitability of these results
for use in any subsequent computation for the same problem. An indication of the error in the
solution on the last mesh where convergence was obtained can be obtained by calling DO2TZF.
The error requirements may need to be relaxed and/or the maximum number of mesh points may
need to be increased. See also Section 8.

7 Accuracy

The accuracy of the solution is determined by the parameter TOLS in the prior call to DO2TVF (see
Sections 3 and 8 of the document for DO2TVF for details and advice). Note that error control is applied
only to solution components (variables) and not to any derivatives of the solution. An estimate of the
maximum error in the computed solution is available by calling DO2TZF.

8 Further Comments

If DO2TKF returns with IFAIL = 2, 3, 4 or 5 and the call to DO2TKF was a part of some continuation
procedure for which successful calls to DO2TKF have already been made, then it is possible that the
adjustment(s) to the continuation parameter(s) between calls to DO2TKF is (are) too large for the
problem under consideration. More conservative adjustment(s) to the continuation parameter(s) might
be appropriate.

9 Example

The following example is used to illustrate the treatment of a high order system, control of the error
in a derivative of a component of the original system, and the use of continuation. See also DO2TVF,
D02TXF, DO2TYF and DO2TZF, for the illustration of other facilities.

Consider the steady flow of an incompressible viscous fluid between two infinite coaxial rotating discs.
See [2] and the references therein. The governing equations are

1
_flll/+fflll +ggl — O

VR

1
1" + / _ ! — 0
—\/Eg fo'—fg

subject to the boundary conditions
f(0)=f1(0)=0. g(0) =9y, f(1)=f'(1)=0, g(1) =9,

where R is the Reynolds number and Q,, Q; are the angular velocities of the disks.

[NP2834/17] DO2TKF.7

D02TKF D02 - Ordinary Differential Equations

We consider the case of counter-rotation and a symmetric solution, that is @, = 1,Q; = —1. This
problem is more difficult to solve, the larger the value of R. For illustration, we use simple continnation
to compute the solution for three different values of R (= 10%,108, 1010). However, this problem can be
addressed directly for the largest value of R considered here. Instead of the values suggested in Section
5 of the document for DO2TXF for NMESH, IPMESH and MESH in the call to DO2TXF prior to a
continuation call, we use every point of the final mesh for the solution of the first value of R, that is we
must modify the contents of IPMESH. For illustrative purposes we wish to control the computed error
in f' and so recast the equations as

!

Y = Y
vy = —VR(y,¥; + ysh)
y3 = \/I_Z(yzya—yly_f,)

subject to the boundary conditions

¥:(0) =3,(0) =0, y3(0)=9, y(1)= ¥(1) =0, y3(1)=-Q, Q=1

For the symmetric boundary conditions considered, there exists an odd solution about = 0.5. Hence,
to satisfy the boundary conditions, we use the following initial approximations to the solution in GUESS:

we@) = -~)1
yp(z) = —z(z-— 1)(5z% — 5z + 1)
ys(z) = —-8Q(z— %)3

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* DO2TKF Example Program Text
* Mark 17 Release. NAG Copyright 1995.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, MMAX, NLBC, NRBC, NCOL, MXMESH
PARAMETER (NEQ=3,MMAX=3,NLBC=3,NRBC=3,NCOL=7 ,MXMESH=51)
INTEGER LRWORK, LIWORK
PARAMETER (LRWORK=MXMESH* (109*NEQ#**2+78*NEQ+7),
+ LIWORK=MXMESH* (11*NEQ+6))
* .. Scalars in Common ..
real OMEGA, SQROFR
* .. Local Scalars ..
real ERMX, R
INTEGER I, IERMX, IFAIL, IJERMX, J, NCONT, NMESH
* .. Local Arrays ..
real MESH(MXMESH), TOL(NEQ), WORK(LRWORK),
+ Y(NEQ, O:MMAX-1)
INTEGER IPMESH(MXMESH), IWORK(LIWORK), M(NEQ)
* .. External Subroutines ..
EXTERNAL DO2TKF, DO2TVF, DO2TXF, DO2TYF, DO2TZF, FFUN,
+ FJAC, GAFUN, GAJAC, GBFUN, GBJAC, GUESS
* .. Intrinsic Functions ..
INTRINSIC real, SQRT
* .. Common blocks ..
COMMON /PROBS/SQROFR, OMEGA

DO2TKF.8 [NP2834/17]

D02 - Ordinary Differential Equations

* *

20

+

40

+

. Executable Statements ..
WRITE (NOUT,*) ’'DO2TKF Example Program Results’
WRITE (NOUT,*)
NMESH = 11
MESH(1) = 0.0e0
IPMESH(1) = 1
DO 20 I = 2, NMESH - 1
MESH(I) = (I-1)/real(NMESH-1)
IPMESH(I) = 2
CONTINUE
MESH(NMESH) = 1.0e0
IPMESH(NMESH) = 1
M(1) = 1
M(2)
M(3) =
TOL(1) = 1.0e-4
TOL(2) = TOL(1)
TOL(3) = TOL(1)
IFAIL = 0
CALL DO2TVF(NEQ,M,NLBC,NRBC,NCOL,TOL,MXMESH,NMESH,MESH, IPMESH,
WORK,LRWORK, IWORK ,LIWORK, IFAIL)
Initialize number of continuation steps
NCONT = 3
Initialize problem dependent parameters
OMEGA = 1.0e0
R = 1.0e+6
DO 80 J = 1, NCONT
SQROFR = SQRT(R)
WRITE (NOUT,99999) TOL(1), R
Solve
CALL DO2TKF (FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,WORK, IWORK,
IFAIL)

n N w

Extract mesh
CALL DO2TZF(MXMESH,NMESH,MESH, IPMESH,ERMX, IERMX, IJERMX,WORK,

+ IWORK,IFAIL)

WRITE (NOUT,99998) NMESH, ERMX, IERMX, IJERMX,

+ (1,IPMESH(I),MESH(I),I=1,NMESH)

Print solution components on mesh
WRITE (NOUT,99997)
DO 40 I = 1, NMESH
CALL DO2TYF(MESH(I),Y,NEQ,MMAX,WORK,IWORK,IFAIL)
WRITE (NOUT,99996) MESH(I), Y(1,0), Y(2,0), Y(3,0)
CONTINUE
Select mesh for continuation and modify problem dependent
parameters
IF (J.LT.NCONT) THEN
R = 1.0e+02*R
DO 60 I = 2, NMESH - 1
IPMESH(I) = 2

60 CONTINUE
CALL DO2TXF(MXMESH,NMESH,MESH,IPHESH,WORK,IWORK,IFAIL)
END IF
80 CONTINUE
STOP
*
99999 FORMAT (/’ Tolerance = ’,1P,e8.1,” R = ’,e10.3)

99998 FORMAT (/’ Used a mesh of ’',I4,’ points’,/’ Maximum error = ’,

+ e10.2,’ in interval ’,I4,’ for component ’,14,//’ Mesh p’,

[NP2834/17]

D02TKF

DO2TKF.9

D02TKF D02 - Ordinary Differential Equations

+ ’oints:’,/4(14,’(’,11,’)’,e11.4))
99997 FORMAT (/’ x £ £ g’)
99996 FORMAT (’ ’,F8.3,1X,3F9.4)

END
SUBROUTINE FFUN(X,Y,NEQ,M,F)
* .. Scalar Arguments ..
real X
INTEGER NEQ
* .. Array Arguments ..
real F(NEQ), Y(NEQ,O:*)
INTEGER M(NEQ)
* .. Scalars in Common ..
real OMEGA, SQROFR
* .. Common blocks ..
COMMON /PROBS/SQROFR, OMEGA
* .. Executable Statements ..
F(1) = ¥(2,0)
F(2) -(Y(1,0)*Y(2,2)+Y(3,0)*Y(3,1))*SQROFR
F(3) (Y(2,0)*Y(3,0)-Y(1,0)*Y(3,1))*SQROFR
RETURN
END
SUBROUTINE FJAC(X,Y,NEQ,M,DFDY)
* .. Scalar Arguments ..
real X
INTEGER NEQ
* .. Array Arguments .
real DFDY(NEQ,NEQ,O:*), Y(NEQ,O:*)
INTEGER M(NEQ)
* .. Scalars in Common ..
real OMEGA, SQROFR
* .. Common blocks ..
COMMON /PROBS/SQROFR, OMEGA
* .. Executable Statements ..
DFDY(1,2,0) 1.0e0
DFDY(2,1,0) = -Y(2,2)*SQROFR
DFDY(2,2,2) = -Y(1,0)*SQROFR
DFDY(2,3,0) = -Y(3,1)*SQROFR

DFDY(2,3,1) = -Y(3,0)*SQROFR

DFDY(3,1,0) = -Y(3,1)*SQROFR

DFDY(3,2,0) = Y(3,0)*SQROFR

DFDY(3,3,0) = Y(2,0)*SQROFR

DFDY(3,3,1) = -Y(1,0)*SQROFR

RETURN
END
SUBROUTINE GAFUN(YA,NEQ,M,NLBC,GA)
* .. Scalar Arguments ..
INTEGER NEQ, NLBC
* .. Array Arguments ..
real GA(NLBC), YA(NEQ,O0:*)
INTEGER M(NEQ)
* .. Scalars in Common ..
real OMEGA, SQROFR
* .. Common blocks ..
COMMON /PROBS/SQROFR, OMEGA
* .. Executable Statements ..
GA(1) = YA(1,0)
GA(2) = YA(2,0)
GA(3) YA(3,0) - OMEGA

DO2TKF.10 [NP2834/17]

D02 - Ordinary Differential Equations

[NP2834/17]

RETURN
END

SUBROUTINE GBFUN(YB,NEQ,M,NRBC,GB)
. Scalar Arguments ..

INTEGER
. Array Arguments ..

real

INTEGER
. Scalars in Common ..

real

NEQ, NRBC

GB(NRBC), YB(NEQ,O:%*)
M(NEQ)

OMEGA, SQROFR

. Common blocks ..

COMMON

/PROBS/SQROFR, OMEGA

. Executable Statements ..

GB(1)
GB(2)
GB(3)
RETURN
END

YB(1,0)
YB(2,0)
YB(3,0) + OMEGA

SUBROUTINE GAJAC(YA,NEQ,M,NLBC,DGADY)
. Scalar Arguments ..

INTEGER
. Array Arguments ..

real

INTEGER
. Executable Statements ..
DGADY(1,1,0) = 1.0e0

DGADY(2,2,0)
DGADY(3,3,0)

RETURN
END

NEQ, NLBC

DGADY (NLBC,NEQ,0:*), YA(NEQ,O:*)
M(NEQ)

1.0e0
1.0e0

SUBROUTINE GBJAC(YB,NEQ,M,NRBC,DGBDY)
. Scalar Arguments ..

INTEGER
. Array Arguments ..

real

INTEGER
.. Executable Statements ..

DGBDY(1,1,0)
DGBDY(2,2,0)
DGBDY(3,3,0)

RETURN
END

NEQ, NRBC

DGBDY (NRBC,NEQ,0:*), YB(NEQ,O:%*)
M(NEQ)

1.0e0
1.0e0
1.0e0

SUBROUTINE GUESS(X,NEQ,M,Y,DYM)
. Scalar Arguments ..

real

INTEGER
. Array Arguments ..

real

INTEGER
. Scalars in Common ..

real

X
NEQ

DYM(NEQ), Y(NEQ,O:*)
M(NEQ)

OMEGA, SQROFR

. Common blocks ..

COMMON

/PROBS/SQROFR, OMEGA

. Executable Statements ..

Y(1,0)
Y(2,0)
Y(2,1)
Y(2,2)

~X**2%(X-0.5e0)*(X-1.0e0) **2
-X*(X-1.0e0)*(5.0e0*X**2-5.0e0*X+1.0e0)
—(20.0eO*X**S—B0.0e0*X**2+12.0e0*X-1.0eO)
-(60.0e0*X**2-60.0e0*X+12.0e0*X)

DO02TKF

DO2TKF.11

DO2TKF D02 - Ordinary Differential Equations

Y(3,0) = -8.0e0*0OMEGA*(X-0.5€0)**3
Y(3,1) = -24.0e0*x0MEGA*(X~0.5e0)**2
DYM(1) = Y(2,0)

DYM(2) = -(120.0e0*X-60.0e0)

DYM(3) = -56.0e0*0MEGA*(X-0.5€0)
RETURN

END

9.2 Example Data

None.

9.3 Example Results

DO2TKF Example Program Results

Tolerance = 1.0E-04 R = 1.000E+06

Used a mesh of 21 points
Maximum error = 0.62E-09 in interval 20 for component 3

Mesh points:

1(1) 0.0000E+00 2(3) 0.5000E-01 3(2) 0.1000E+00 4(3) 0.1500E+00

0
5(2) 0.2000E+00 6(3) 0.2500E+00 7(2) 0.3000E+00 8(3) 0.3500E+00
9(2) 0.4000E+00 10(3) 0.4500E+00 11(2) 0.5000E+00 12(3) 0.5500E+00
13(2) 0.6000E+00 14(3) 0.6500E+00 15(2) 0.7000E+00 16(3) 0.7500E+00
17(2) 0.8000E+00 18(3) 0.8500E+00 19(2) 0.9000E+00 20(3) 0.9500E+00
21(1) 0.1000E+01
x £ 1’ g
.000 0.0000 0.0000 1.0000
.050 0.0070 0.1805 0.4416
.100 0.0141 0.0977 0.1886
.150 0.0171 0.0252 0.0952
.200 0.0172 -0.0165 0.0595
.250 0.0157 -0.0400 0.0427
.300 0.0133 -0.0540 0.0322
.350 0.0104 -0.0628 0.0236
.400 0.0071 -0.0683 0.0156
.450 0.0036 -0.0714 0.0078
.500 0.0000 -0.0724 0.0000

.660 -0.0036 -0.0714 -0.0078
.600 -0.0071 -0.0683 -0.0156
.660 -0.0104 -0.0628 -0.0236
.700 -0.0133 -0.0540 -0.0322
.750 -0.0157 -0.0400 -0.0427
.800 -0.0172 -0.0165 -0.0595
.850 -0.0171 .0262 -0.0952
.900 -0.0141 .0977 -0.1886
.950 -0.0070 .1805 -0.4416
.000 0.0000 .0000 -1.0000

OO0 000000000000 000 O oo

Tolerance = 1.0E-04 R = 1.000E+08

Used a mesh of 21 points
Maximum error = 0.45E-08 in interval 6 for component 3

DO2TKF.12 [NP2834/17]

D02 - Ordinary Differential Equations

Mesh points:
1(1) 0.

5(2)
9(2)
13(2)
17(2)
21(1)

- O 0O 0000000000000 O0 OO0 OO0

Tolerance

Used a mesh of

0.
0.
0.
0.
0.

X

.000
.018
.0356
.052
.069
.086
.103
.135
.167
.231
.294
.471
.649
.745
.842
.882
.922
.945
.967
.984
.000

Maximum error =

Mesh points:

1(1

5(2)
9(2)
13(2)
17(2)

21(1

©C OO0 O 00000 OO OO

[NP2834/17]

) O
0.
0.
0.
0.
0.

)

.000
.006
.013
.019
.025
.031
.037
.050
.063
.094
.126
.419
.712

0000E+00 2(3) 0.1757E-01 3(2)
6891E-01 6(3) 0.8593E-01 7(2)
1672E+00 10(3) 0.2306E+00 11(2)
6486E+00 14(3) 0.T7455E+00 15(2)
9225E+00 18(3) 0.9449E+00 19(2)
1000E+01
f £ g
0.0000 0.0000 1.0000
0.0025 0.1713 0.3923
0.0047 0.0824 0.1381
0.0056 0.0267 0.0521
0.0058 0.00256 0.0213
0.0057 -0.0073 0.0097
0.0056 -0.0113 0.0053
0.0052 -0.0135 0.0027
0.0047 -0.0140 0.0020
0.0038 -0.0142 0.0015
0.0029 -0.0142 0.0012
0.0004 -0.0143 0.0002
-0.0021 -0.0143 -0.0008
-0.0035 -0.0142 -0.0014
-0.0049 -0.0139 -0.0022
-0.0054 -0.0127 -0.0036
-0.0058 -0.0036 -0.0141
-0.0057 0.0205 -0.0439
-0.0045 0.0937 -0.1592
-0.0023 0.1753 -0.4208
0.0000 0.0000 -1.0000
= 1.0E-04 R = 1.000E+10
21 points
0.31E-05 1in interval
.0000E+00 2(3) 0.6256E-02 3(2)
2450E-01 6(3) 0.3076E-01 7(2)
6292E-01 10(3) 0.9424E-01 11(2)
7125E+00 14(3) 0.8246E+00 15(2)
9719E+00 18(3) 0.9803E+00 19(2)
1000E+01
b £’ g
0.0000 ©0.0000 1.0000
0.0009 0.1623 0.3422
0.0016 0.0665 0.1021
0.0018 0.0204 0.0318
0.0019 0.0041 0.0099
0.0019 -0.0014 0.0028
0.0019 -0.0031 0.0007
0.0019 -0.0038 -0.0002
0.0018 -0.0038 -0.0003
0.0017 -0.0039 -0.0003
0.0016 -0.0039 -0.0002
0.0004 -0.0041 -0.0001
-0.0008 -0.0042 0.0001

0.3515E-01
0.1030E+00
0.2939E+00
0.8423E+00
0.9673E+00

4(3)

0.5203E-01

8(3) 0.1351E+00

12(3)
16(3)
20(3)

7 for component

0.1251E-01
0.3702E-01
0.1256E+00
0.9368E+00
0.9886E+00

4(3)
8(3)
12(3)
16(3)
20(3)

0.4713E+00
0.8824E+00
0.9836E+00

3

0.1851E-01
0.4997E-01
0.4190E+00
0.9544E+00
0.9943E+00

DO2TKF

DO2TKF.13

DO2TKF

.825
.937
.954
.972
.980
.989
.994
.000

s O O OO O0OO0oO0

DO2TKF.14 (las

.0013
.0018
.0019
.0019
.0019
.0015
.0008
.0000

.0043
.0043
.0042
.0003
.0152
.0809
.1699
.0000

.0002
.0003
.0001
.0049
.02562
.1279
.3814
.0000

D02 - Ordinary Differential Equations

[NP2834/17]

D02 - Ordinary Differential Equations DO2TVF

DO2TVF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO2TVF is a setup routine which must be called prior to the first call of the nonlinear two point boundary
value solver DO2TKF.

2 Specification

SUBROUTINE DO2TVF(NEQ, M, NLBC, NRBC, NCOL, TOLS, MXMESH, NMESH,

i MESH, IPMESH, RWORK, LRWORK, IWORK, LIWORK,
2 IFAIL)
INTEGER NEQ, M(NEQ), NLBC, NRBC, NCOL, MXMESH, NMESH,
1 IPMESH(MXMESH), LRWORK, IWORK(LIWORK), LIWORK,
IFAIL
real TOLS(NEQ), MESH(MXMESH), RWORK(LRWORK)

3 Description

DO2TVF and its associated routines (DO2TKF, DO2TXF, DO2TYF and D02TZF) solve the two point
boundary value problem for a nonlinear system of ordinary differential equations

1 -1 -

yilml; = fl(l')ylvyilli)"')yéml 1;1y21-"y£1m" 1))
m 1= n—

D) ? = f2(zay13y1 y~~sy1m ,yz»---yf,m l))
1 -1 -

ygmn) — fn(rvyhyg))“‘Xygml),y27...y£1mn 1))

over an interval [a,b] subject to p (> 0) nonlinear boundary conditions at a and ¢ (> 0) nonlinear
n

boundary conditions at b, where p+ ¢ = Zmi. Note that ygm)(:r) is the m-th derivative of the i-th
1

solution component. Hence ygo)(:c) = y;(z). The left boundary conditions at a are defined as

gz(z(y(a))) :0’ 1= 112,"'an

and the right boundary conditions at b as
g](z(y(b))) = Os .] = 112v - 4
where y = (y;,¥s,---,¥,) and

(@) = (1), 1), ™ TV (@), wa(2), 8 ().

See Section 8 for information on how boundary value problems of a more general nature can be treated.

DO2TVF is used to specify<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>